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Abstract— a contribution is proposed for the modeling of 

mechanical systems using multibond graphs. When modeling 
a physical system, it may be needed to catch the dynamic 
behavior contribution of the joints between bodies of the 
system and therefore to characterize the stiffness and 
damping of the links between them. The visibility of where 
dissipative or capacitive elements need to be implemented to 
represent stiffness and damping in multibond graphs is not 
obvious and will be explained. A multibond graph 
architecture is then proposed to add stiffness and damping in 
three rotational degrees of freedom. The resulting joint 
combines the spherical joint multibond graph relaxed causal 
constraints while physically representing three concatenated 
revolute joints. The mathematical foundations are presented, 
and then illustrated through the modeling and simulation of 
an inertial navigation system; in which stiffness and 
damping between the gimbals are taken into account. This 
method is particularly useful when modeling and simulating 
multibody systems using Newton-Euler formalism in 
multibond graphs. Future work will show how this method 
can be extended to more complex systems such as rotorcraft 
blades' connections with its rotor hub. 

Keywords—multibody dynamics; multibond graphs; 
spherical joint; revolute joint; causality 

NOMENCLATURE 

��,�

�  
Angular velocity vector between bodies a and b 
expressed in body c reference frame 

� Vector 

0 Null vector 

�� Reference frame attached to body j 

��→��� Rotation matrix between bodies j and j+1 

MBG Multibond graph 

 

Multibond graph power arrows transport a three 
dimensional flow vector and a three dimensional effort 
vector. 

I. INTRODUCTION 

In order to analyze the dynamics of a mechanical 
system, an intermediate step can be to model the system 
with a multibody approach. In order to obtain a 

mathematical model of the system, classical analytical 
approaches can be developed. When the complexity of the 
system implies multiphysics, the use of a method in which 
the subsystems communicate by exchanging a universal 
physics quantity, like energy, can facilitate the 
construction of the system’s mathematical model. This 
potential is brought by bond graphs, and when modeling 
spatial multibody systems, by multibond graphs [1].  

In this context, it may be needed to catch the dynamic 
behavior contribution of the joints between bodies of the 
system and therefore to characterize the stiffness and 
damping of the links between the bodies. Tiernego and 
Bos [1] introduced a systematic method to model 
mechanical systems with multibond graphs. In [2], Zeid 
proposed a library of joints and their respective equivalents 
in bond graphs that satisfy the classic constraint equations 
of each joint. In [3], he also proposed and demonstrated 
how to obtain an explicit formulation of the constraint 
equations by developing a singularly perturbed formulation 
for bond graphs. The result basically consists in adding R 
and C elements to the common flow junctions representing 
each degree of freedom of a joint. He also points out the 
fact that tuning the values of these elements can be useful 
to obtain an explicit formulation of the equations of motion 
and that other linear or nonlinear characteristics of the 
joints can also be obtained by working on the expression of 
these elements. In [4], a non-extensive translation of the 
library from scalar to vector bond graphs can be found.  

Modeling rotating bodies around more than two non 
co-linear directions is trickier than translating bodies, 
especially due to the non-obvious trajectories and the 
nonlinear gyroscopic effects that appear in the equations of 
motion. When three translational degrees of freedom 
between two bodies need to be constrained, a spherical 
joint or three concatenated revolute joints can be used to 
constraint the movements, see Fig. 1. 
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Fig. 1. Spherical joint and three concatenated revolute joints 

The first section details, more explicitly than what can be 
found in literature, the rotation axes around which the 
dissipative or/and capacitive elements addition play a role; 
in the second section, a multibond graph joint architecture 
is proposed to model stiffness and damping around three 
rotational degrees of freedom combining literature’s 
spherical and revolute joints formulations. To illustrate the 
proposal, an inertial navigation system is modeled and 
simulated in the last section. Future work will show how 
this method can be extended to more complex systems 
such as rotorcraft blades' connections with its rotor hub. 

II. MODELING STIFFNESS AND DAMPING WITH THREE 

ROTATIONAL DEGREES OF FREEDOM 

The two main classic approaches to obtain the 
equations of motion of mechanical systems are Newton-
Euler and Lagrange. In [1], Tiernego and Bos describe the 
multibond graph procedure using a Newton-Euler 
description of the system. In [5], Karnopp describes the 
bond graphs from a Lagrange point of view. Obviously, 
the two procedures give the same result; but in terms of 
resulting graph visibility, when modeling large systems, 
the Newton-Euler approach bond graph result is the one 
that keeps closer to the physical system – the results 
presented concern this approach. Again, for a visibility 
concern, Euler angles are used in this work; but the logic 
deployed can be extended to another set of Euler angles or 
more generally to quaternions. Concerning the 
representation of three degrees of freedom between two 
rigid bodies, Fig. 2 shows an equivalent of Fig. 1, using 
multibond graphs based on [2] and [4]. 

 

 

 

Fig. 2. Angular velocities axis in multibond graphs 

 

Since neither R nor C elements have been added, and 
taking into account that the flow sources are null, the joints 
represented are ideal joints. In Fig. 2, the details of the 
angular velocities show how the multibond graphs 
architectures of the joints constraint the axes around which 
R or C elements can be added. In the spherical joint, these 
elements can only be added around body i reference frame 
axes while the concatenation of three revolute joints 
permits to add them around intermediary reference frames 
axes. Obviously, the choice of one or another joint solution 
depends on the modeling. However, it is important to 
distinguish the bond graph architecture of a joint and the 
coordinates that can be chosen to observe the relative 
motion between bodies i and i+1 . 
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Fig. 3. Adding stiffness and damping on each degree of freedom 

By adding stiffness and damping characteristics in both 
solutions we obtain Fig. 3. Even if for both joints, the 
relative angular velocity vector between body i+1  and the 
inertial reference frame R0 are equal, the dissipative and 
capacitive bond graph elements are not placed exactly 
around the exact same axes. 

Causality analysis 

 
If we now add the causal layer to the graphs, the use of 

null flow sources to block the degrees of freedom of a joint 
in a multibond graph imposes the causality of the 1 
junction in red circles and ellipse on Fig. 4. In the case of 
the spherical joint, the two possible causalities may be 
assigned when for the three revolute joints only one can be 
assigned. 
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Fig. 4. Causality restrictions 
 

As a result, for the three concatenated revolute joints, 
only two causality assignments are possible for the 
common effort (zero) junction above the common flow 
(one) junctions mentioned before. This limits the number 
of available modeling hypothesis for the rest of the 
multibond graph. The “blocked degrees of freedom” will 
have to be modeled with very low values of C elements 
(high stiffness) or, the inertial elements of a rigid body 
multibond graph will have a derivative causality. From a 
mathematical stand point, derivative causalities mean the 
system is described by differential algebraic equations 
(DAE). Depending on the index of the DAE, an adapted 
solver might still be able to simulate the system. 
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On the other hand, for the spherical joint, the causality 
of the common effort (zero) junction still has three 
possibilities.  

The conclusion is that the multibond graph architecture 
of the spherical joint has a more relaxed causality. 
Relaxing the causal constraints results useful when 
modeling large spatial mechanical systems since it allows 
limiting the number of inertial elements with derivative 
causalities in rigid bodies’ multibond graphs. 

If we now want to keep the reduced causality constraints of 
the spherical joint bond graph architecture but still be able 
to add some stiffness and damping around the axes just 
like with three revolute joints, how could we do? This 
issue is addressed in the next paragraph, and a new 
multibond graph joint architecture physically equivalent to 
three concatenated revolute joints is proposed. 

III.  PROPOSING A MULTIBOND GRAPH FOR MODELING 

THREE ROTATIONAL DEGREES OF FREEDOM 

The idea is to simplify multiple revolute joints bond graph 
architectures in order to release the causal constraint while 
being able to add stiffness and damping around the 
intermediate axes between bodies i and i+1  – Fig. 5. 
 

 
Fig. 5. Intermediate reference frames definitions 

The result is presented in Fig. 6. The next paragraphs 
discuss its mathematical foundations. 
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Fig. 6. Multibond graph proposal to represent three concatenated 
revolute joints 

Mathematical foundations 

The idea is to demonstrate that for both three revolute 
joints and the new architecture proposed the expression of 
ω���,�

���  is equivalent. As demonstrated by Tienergo and Bos 
in [1],  the demonstration for efforts follows the same steps 
as for flows. Therefore, it will not be presented. It is 
assumed that ω�,�

� = 0,	but it could also be proven when 
this quantity is not null. Starting with the three revolute 
joint, see Fig. 7, 
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Fig. 7. Intermediate reference frames definitions 

Based on basic bond graph rules applied to Fig. 7, it can 
be demonstrated that,  

����,�
��� = ��→��� ���→� ���→� ���,�

� + ��� �1

0

0

	
 +

��� �0

1

0

	
 + ��� �0

0

1

	
   (1) 

Where, 

M�→� = �1 0 0

0 cosα� −sinα�

0 sinα� cosα�



	

             (2) 

M�→� = � cosα� 0 sinα�

0 1 0

−sinα� 0 cosα�



	

														(3) 

	M�→��� = �cosα� −sinα� 0

sinα� cosα� 0

0 0 1



	

														(4) 

 
The development of (1) gives, 
 

ω���,�
��� = � cosα�. cosα�. α�� + sinα�. α��

−cosα�. sinα�. α�� + cosα�. α��
sinα�. α�� + α�� 															(5) 

 
Now, in the case of the new architecture proposal, we 
defined, 

ω���,� = α�� . x� + α�� . y� + α�� . z�  														(6) 

 
As a result, ω���,�

�   can be expressed by, 

ω���,�
� = M
��
����.�α��

α��
α�� 																		(7) 

Where,  

M
��
���� = �1 0 sinα�

0 cosα� −cosα�sinα�

0 sinα� cosα�cosα�


														(8) 

 
And since basic bond graph rules applied to Fig. 6 give,  
 

ω���,�
��� = M�→���. �ω�,�

� + ω���,�
� �														(9) 

 
Where, 	M�→��� = 
M�→�. M�→�. M���→��															(10) 
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The development of (9) finally gives, 
 

ω���,�
��� = � cosα�. cosα�. α�� + sinα�. α��

−cosα�. sinα�. α�� + cosα�. α��
sinα�. α�� + α�� 															(11) 

 
Equation (11) is equal to (5). As a result, the MBG 
architecture proposed is equivalent to literature’s three 
concatenated revolute joints architecture by modulating its 
first transformer element by M
��
����	and its second 
transformer by M�→��� (see Fig. 6). 

IV.  APPLICATION TO AN INERTIAL NAVIGATION SYSTEM 

 

In order to illustrate the architecture proposal, the previous 
results are applied to an inertial navigation system. Inertial 
navigation systems (INS) are used in vehicles such as 
aircrafts and spacecrafts to implement motion control or 
guidance for pilots. An interesting advantage of an INS is 
its form of navigation that does not rely on external 
references [8]. To illustrate the concept, we will study the 
change of orientation of a rotorcraft in hover flight due to a 
wind gust. The principle of the INS consists in deducing 
the actual orientation of a rotorcraft by comparing it to a 
reference frame. One of the technologies to create a 
reference frame consists in isolating what we call a 
platform (see Fig. 8) from the rotorcraft: this can be 
achieved by concatenating three concentric gimbals linked 
by revolute joints. 

 

zi+1

xi+1
yi+1Attached to the 

Rotorcraft
Body i

Platform
Body i+1 Gimbals

 
Fig. 8. Inertial navigation system 

Fig. 9 describes two rigid bodies: the rotorcraft and the 
INS platform. Please refer to Appendix 1 to see the 
multibond graphs models of the complete system. The 
translations of the bodies have not been considered, our 
focus is on rotations. 

Rotorcraft
Attached to gimbal 1  Gimbal 2  Gimbal 3 Platform

α1 α2 α3

R1 R2 Ri+1Ri

Ground

Inertial reference 
frame R0

Roll axis

Pitch 
axis

Yaw axis

X

Y

Z

 
Fig. 9. Frames and parameters definitions 

The objective of the INS is to be able to provide pitch, roll 
and yaw angles (	��, �� and	��) estimations thanks to the 
measures of		��� ,	��� and ��� . As said before, an inertial 

reference frame Ri+1 can be created inside the rotorcraft, 
by isolating the platform. Therefore we can establish that,  
 ����,� = 0                                  (12) 
 
Physically, this condition can be obtained with an adapted 
adjustment of the stiffness and damping between the 
gimbals. As a matter of fact, it can be easily imagined that 
the smaller the damping between the gimbals is; the less, 
efforts can be transmitted to the platform and therefore the 
easier it is, to keep the platform still.  
 
The angular velocity of the rotorcraft can be written as, 
 ��,� = ��,��� + ����,�                     (13) 

 
As a result, the angular rates of the rotorcraft can be 
determined by simply knowing the angular rates of the 
gimbals, ��,� = ��,���                          (14) 
 
We can therefore express the pitch, roll and yaw angles in 
the reference frame created by the platform, 
 

�����ℎ������� 	 = ���,���
��� .�� = �−����,�

��� .��       (15) 

 
Using (7), and projecting the vector in i+1  frame, 
 

�����ℎ������� 	 = −� 	��→���.���������.���������� 	 .��   (16) 

 
With		��→��� and ��������� 	defined as in the previous 
section.  

Equation (16) allows to estimate the pitch, roll and yaw 
angles by measuring the angular velocities of the INS 
gimbals (��� ,	��� and ��� ). 
 

Simulation results 

 
In order to illustrate the new joint architecture proposed, 
we compare the simulation results of the system’s model 
described in Fig. 9 and Appendix 1. The two models 
compared are the one with three classic concatenated 
revolute joints and one with the new architecture proposed 
– see Appendix 1. At t=1s, a wind gust modeled by a 
torque impulse impacts the rotorcraft on each of its axis. 
The idea being to perturb the rotorcraft on its pitch, roll 
and yaw axis we approximate the action of the wind as a 
torque and not a force on its fuselage. 
The simulation results are presented in Fig. 10. Since we 
have chosen high viscous friction coefficients between the 
air and the fuselage, the rotorcraft motion is highly 
damped and the fuselage does not oscillate around an 
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equilibrium position. Fig. 10 shows that both architectures 
give the same results.  
 
In Fig. 11, we plot the orientation of the platform in the 
inertial reference frame and define these angles as	β�,β� 
and	β�. It can be observed in Fig. 11 that the three angles 
deviate from zero. This can be expected since the platform 
was not ideally isolated (see the dissipative and capacitive 
values for the platform isolation in Appendix 1). Another 
INS technology could be considered to maintain (12) to a 
desired approximation [8]. 
 
What we are interested in illustrating in Fig. 10 and Fig. 
11 is that the proposed multibond graph converges with 
the classic three concatenated revolute joints. 

 

 
Fig. 10. Rotorcraft orientation comparison using the two MBG 

architectures 

 
Fig. 11. Platform orientation deviation comparison using the two MBG 

architectures 

Causality analysis of the models 

 
In Appendix 1, in Fig. 12, the inertial element that 
characterizes the platform is in derivative causality as 
discussed in the section II. This is the case whether the 
ground is modeled as a stiff capacitive element or a null 
source of flow. 
On the other hand, the model that contains the new 
architecture proposal in Fig. 13 can keep its integral 
causality even if the null flow source is introduced. 
Keeping an integral causality is also an advantage since 

the mathematical model of the system is a set of Ordinary 
Differential Equations (ODEs), which enables a 
systematic numerical resolution of the ODEs [9].  

V. CONCLUSION AND FUTURE WORK 

This paper illustrates the different ways of modeling 
stiffness and damping using multibond graphs when two 
bodies of a mechanical system are constrained by three 
rotational degrees of freedom. It highlights where 
dissipative and capacitive bond graph elements need to be 
added depending on modeling hypotheses. 
A multibond graph architecture simplification for the 
concatenation of three revolute joints is proposed; and 
illustrated through the example of an inertial navigation 
system. The potential of this architecture simplification in 
the limitation of derivative causalities has also been 
demonstrated. This can be particularly useful when 
modeling larger mechanical systems. 
Future work could include Euler parameters or 
quaternions instead of Euler angles in order to avoid any 
mathematical singularities such as the famous gimbal lock 
of the inertial navigation system in Apollo 11. It will also 
be shown how this method can be extended to more 
complex systems such as rotorcraft blades' connections 
with its rotor hub. 
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APPENDIX 1 

 

TABLE I.  MODELS’  DATA  

Viscous friction air/fuselage R=103 Nm.s/rad 

Wind gust 

Torque on each axis of Ri, 
Txi=5000 Nm 
Tyi=1000 Nm 
Tzi=10000 Nm 

Platform isolation 
C=10-5Nm/rad 
R=10-5 Nm.s/rad 

Rotorcraft fuselage 
Ixx=10 000 m².kg, Iyy=10 000 
m².kg, Izz=5000 m².kg 

Platform 
Ixx=10 m².kg, Iyy=10 m².kg, 
Izz=10 m².kg 
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Fig. 12. Rotorcraft an INS constrained by three classic MBG concatenated revolute joints 
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Fig. 13. Rotorcraft an INS constrained by the proposed MBG of three concatenated revolute joints 
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