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Abstract— Rotor dynamic systems are often analyzed 
with ideal drive assumption. However, all drives are 
essentially non-ideal, i.e., they can only provide a limited 
amount of power and their dynamics is coupled with the 
driven system’s dynamics. One basic fact often ignored in 
rotor dynamics is that the motor power is not only spent to 
spin the rotor shaft but also to overcome the resistances to 
rotation and more importantly, to overcome the power 
dissipated in lateral vibrations during rotor whirl. Near the 
resonances, a flexible rotor with unbalance can attain several 
stable operating speeds for the same amount of input drive 
power. Increase in power input near resonance may 
contribute to increasing the transverse vibrations rather 
than increasing the rotor spin, i.e., the rotor spin may get 
caught near resonance for considerable range of power input 
and time. This classic symptom is referred to as the 
Sommerfeld effect. In this article, we generate the rotor 
response with finite element (FE) model by assuming an 
ideal drive. Thereafter, the ideal rotor system’s response is 
used in a power balance equation to theoretically predict the 
characteristics of the non-ideal system. The non-ideal system 
with drive-rotor interaction is modeled in bond graph (BG) 
form whose transient analysis is used to validate the 
theoretical results. The Sommerfeld effect is studied near the 
first two critical speeds of the rotor and the passage through 
resonance conditions are investigated. The results are 
important from the point of actuator sizing for rotors.  

Keywords: Sommerfeld effect, Non-ideal drive, Rotor 
dynamics, Finite element model, Bond graph.  

I.  INTRODUCTION  

Sommerfeld effect [1, 2] is observed in eccentric rotor 
dynamic systems when the input power is increased to 
bring the shaft speed near a critical speed. When the input 
power is increased further to increase the shaft speed, the 
extra input power ends up in exciting the lateral flexural 
vibrations and the shaft speed does not increase 
appreciably. This continues till the power input is 
increased sufficiently whereupon the rotor spin speed 
suddenly jumps to a much higher value and the transverse 
vibration amplitudes reduce appreciably. Similar 
phenomenon is observed during coast down operation, i.e., 
speed during reduction, where near the critical speed the 
rotor spin speed jumps from a higher value to a lower 
value and the flexural amplitudes jump from large values 
to very small values. One interesting property of 
Sommerfeld effect is that certain rotor speeds near the 
critical speeds can never be achieved both during coasting 
up and down [3]. Sommerfeld effect leads to large 

synchronous whirl amplitudes during passage through 
resonance [4, 5]. Previous works in this field have derived 
closed form solution for Sommerfeld effect in symmetric 
rotor systems driven by non-ideal source [6] and source 
interactions at stability threshold [7, 8]. Such works 
consider Sommerfeld effect at the first critical speed and 
neglect the gyroscopic coupling. In this work, we present a 
semi-numerical solution for Sommerfeld effect at higher 
critical speeds in any general rotor dynamic system with 
gyroscopic coupling and rotating material damping.  

Sommerfeld effect characterization through purely 
simulation studies is extremely time consuming and 
requires a great deal of effort due to stiff governing 
equations. In our approach, we simulate FE model of the 
corresponding rotor dynamic system with ideal drive to 
generate its steady-state response characteristics. We use 
polynomial approximations to represent the steady-state 
synchronous whirl amplitudes as function of the rotor 
speed. We then use a bond graph model of the rotor along 
with its non-ideal drive to balance the power input from 
the motor with the power dissipated by the system. Use of 
the response characteristics obtained from the FE 
simulations of the rotor system with ideal drive in the 
power balance equation for the non-ideal drive yields 
predictions of the rotor spin speed(s) and amplitude(s) at 
any given power supply in the non-ideal system. 

II. SOMMERFELD EFFECT CHARACTERIZATION FROM 

IDEAL DRIVE RESPONSE 

A. System Description 

A uniform continuous shaft carrying a rigid rotor, as 
shown in Fig.1, is considered here with simply supported 
ends or ideal bearings. The rotor is driven by a DC motor 
which is a non-ideal drive. The shaft has uniform circular 
cross section and it has no unbalance. The disc is mounted 
with its plane perpendicular to the shaft axis. The mass 
center of the rotor disk has an eccentricity	�. The torsional 
vibration of the shaft is neglected. The shaft has internal 
damping, bearing damping and external transverse and 
rotary damping act on the rotor disk. 

 
Fig. 1. Continuous shaft with offset disk rotor system driven by a DC 
motor. 
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B. Modal Analysis through Finite Element Model 

Obtaining the critical speeds and stability thresholds 
through analytical methods is a complex task. As an 
alternative, FEA is used to study the critical speed and 
stability threshold. The continuous rotor system is 
discretized into a finite degrees-of-freedom system and 
modeled using FE software ANSYS.  The shaft is modeled 
using BEAM188 element and the rigid disk is modeled 
using MASS21 element. The external translational and 
rotational dampers are both modeled using a MATRIX27 
element which contributes a damping matrix to the node to 
which it is attached. The coefficients of the damping 
matrix are the translational and rotational damping 
coefficients. The internal damping coefficient is specified 
using the BETAD command. The rotating internal 
damping, which in the stationary reference frame 
contributes to the system's stiffness and damping matrices, 
is modeled using the 'damping effect' option in CORIOLIS 
command. The stationary reference frame is selected using 
the 'reference frame' option in CORIOLIS command. The 
gyroscopic couples and their associated damping forces are 
also modeled using the 'Coriolis effect' option in the 
CORIOLIS command. The gyroscopic damping matrices 
are generated for BEAM188 element and MASS21 
element. The unbalance forces on the disk due to its 
eccentricity are modeled by applying them as nodal forces 
on the node where the MASS21 element is attached. Refer 
to ANSYS 13.0 manual for details of commands and 
elements. A modal analysis of the system is carried out 
using Q-R damped solver to find the complex eigenvalues 
of the system. 

TABLE I.  PARAMETERS, THEIR DESCRIPTIONS AND VALUES. 

Parameter Description Value 
 Case 1 Case 2 

� Young’s modulus of 
shaft material 

2 � 10��Pa 2 � 10��Pa 

� Density of shaft material 7800	kg/m� 7800	k/m� 
� Shaft radius 0.0175	m 0.0175	m 
� Shaft length 2	m 2	m 
�� Position of rotor disk 

from left bearing end 
0.66m 0.66m 

�� Mass of the disk 110	kg 110	kg 
�� Polar rotary inertia of 

disk 
3	kgm� 3	kgm� 

� Eccentricity in rotor disk 0.001m 0.001m 
�� Internal damping 

parameter in shaft 
0.0002	s 0.0002	s 

�� Direct translational 
damping coefficient on 
disk 

20	Ns/m 250	Ns/m 

�� Direct rotational 
damping coefficient on 
disk 

1	Nms/rad 50	Nm/rad 

�� Bearing rotational 
damping coefficient 

0.2	Nm/rad 0.2	Nm/rad 

 	 DC motor supply voltage Variable Variable 
�
 DC motor electrical 

armature resistance 
5Ω 5Ω 

�
 DC motor characteristic 
constant 

0.4Nm/A 0.4Nm/A 

 

We have considered two cases to demonstrate the 
influence of rotor parameter values on the Sommerfeld 
effect. The two sets of parameter values are given in Table 
1. The parameters for rotor eccentricity, bearing and DC 
motor are not used in FEA; they are used later for non-
ideal system simulation using a bond graph model. 

In the FE model, the shaft was reticulated to 21 1D 
beam elements with 22 nodes. The rotor disk was 
positioned in 15th node. By using FEA technique we 
obtained the Campbell diagrams for the rotor shaft from 
which the rotor critical speeds were determined. Also, the 
stability threshold of the rotor system was obtained.  

The real parts of eigenvalues obtained from the modal 
analysis with the first set of data (Case 1) are plotted in the 
form of Campbell diagram in Fig. 2. The imaginary parts 
of the same eigenvalues are shown in Fig. 3. In these 
figures, labels FW and BW indicate forward and backward 
whirls, respectively, and the preceding numeral indicates 
the mode number. 

 
Fig. 2. Campbell diagram showing natural frequency vs. shaft speeds for 
Case 1 parameters. 

 
Fig. 3. Campbell diagram showing imaginary part of eigenvalues vs. 
shaft speed for Case 1 parameters. 
 

           As seen from Fig. 3, stability threshold obtained is 
567.4 rpm (59.42 rad/s) at which the imaginary part of any 
(here, 1st mode) eigenvalue (decay rate) becomes positive. 
The critical speed obtained from Fig. 2 (intersection of 1x 
line with forward whirl frequencies) is 4.8954 Hz (30.759 
rad/s). At the stability threshold, first mode vibrations 
grow whereas all other mode vibrations remain stable. 

Likewise, the real and imaginary parts of eigenvalues 
obtained from the modal analysis for the second data set 
(Case 2) are plotted as Campbell diagrams in Figs. 4 and 5, 
respectively. 

 The critical speeds in this case are 4.8954 Hz (30.759 
rad/s) for first mode and 57.7584 Hz (362.907 rad/s) for 
second mode. As seen from Fig. 5, the stability threshold is 
3838.3 rpm (401.941 rad/s) at which the second mode 
vibrations become unstable whereas other mode vibrations 
(including first mode) remain stable. 
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Fig. 4. Campbell diagram showing natural frequency vs. shaft speed for 
Case 2 parameters. 

 
Fig. 5. Campbell diagram showing imaginary part of eigenvalues vs. 
shaft speed for Case 2 parameters. 

C. Sommerfeld effect characterization 

In this section the theoretical framework for finding the 
Sommerfeld effect near the critical speeds is developed. 
The source loading on the drive due to flexural vibrations 
can be determined through instantaneous power balance. 
The same power balance principle was used in some 
previous works to analyze distributed parameter non-ideal 
systems [8]. The power dissipated at any instant from a 
synchronously whirling rotor through the dissipative forces 
in transverse and rotary vibrations acting on the rotor disk 
and the bearing damping is given by 
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                   (1)     

where � and � are the transverse displacement of rotor, � 
and � are the rotations about the � and � axes, � is the 
length of the rotor and � is position along shaft length. 
Note that the material damping does not contribute to 
dissipations during synchronous rotor whirl. The rotor disk 
is positioned at  	 
 2� 3⁄ . 

The power generated by the motor is given by 

 ( )s m mm m m m mW i V Rτ θ µ θ µ θ µ θ= = = −ɺ ɺ ɺ ɺ             (2) 

Where 	�� is the motor torque,	��  is the shaft angular/spin 
velocity, �� is motor characteristic,	�� is the motor 
current,	�� is the motor armature resistance and �� is the 
motor supply voltage. The power transfer mechanism in 
steady state synchronous whirl [8, 9] can be written as 

                              m dW W=                                         (3) 

In order to solve the above equation for power balance, 
the closed-form analytical expressions for �, �, � and � 
displacements of the rotor must be obtained. Obtaining the 
response in a closed form for any general multi-disk rotor 
system is a complex task. Hence an alternative method is 
considered in this work. In stable operating range, the rotor 
transverse and rotary displacements reach a steady state 
value corresponding to the shaft speed. The displacements 
depend only on the shaft speed and they are independent of 
the type or nature of the driving system. Hence these 
displacements can be found by driving the rotor system 
with an ideal power source at various constant speeds in 
the region of interest. We reduce the dimension of the 
problem by considering that near the critical speeds, where 
the Sommerfeld effect is predominant, most of the power 
supplied to the rotor system goes to excite a particular 
mode and the energy in the other modes is negligible in 
comparison. Considering one mode approximation, the 
solution for �,�, � and � displacements during steady-
state synchronous whirl can be considered to be a 
harmonic temporal form as given below. 

( ) ( ) ( ) ( ) ( ) ( ) cos ,   sinx t A t y t A tω ω ϕ ω ω ϕ= + = +     (4)                      

( ) ( ) ( ) ( ) ( ) ( ) cos ,  sint B t t t B t tφ ω ω χ ψ ω ω χ= + = + (5) 

where the amplitudes �  and � are functions of the shaft 
speed, � 
 �� , and �	and � are two phases which are not 
useful in our study. To obtain ���� and ����, a transient 
analysis of the ideal power source driven rotor system at 
constant speed is performed using ANSYS.  

Case 1 Result 

    The transient analysis is used to obtain the transverse 
and rotational displacement amplitudes in steady state at 
different constant operating speeds (ideal drive) using the 
FE model developed in ANSYS. The transverse and rotary 
whirl amplitudes (���) and �����	at the rotor (15th node 
of the FE model) are plotted in Figs. 6 and 7 in the range 
of the first critical speed. 

In order to find an expression to fit the data obtained from 
ANSYS, a trial function of the following form is assumed 
for both ���� and  ����: 

 ( )
2

4 2

(1)

(2) (3) (4)

C
T

f C C C

ωω
ω ω

=
+ +

                    (6) 

where ��1�,	��2�,	��3� and ��4� are the coefficients that 
are to be determined. An objective function, which is the 
mean square of the error produced between the trial 
function and the actual response is defined as   

        ( )2

1
( ) ( ) ( )

n

f
i

O x x i T i
=

= −∑                                  (7) 

where   denotes the total number of data points obtained 
using ANSYS and � is the variable that enumerates the 
data points. A minimization of the objective function is 
carried out using MATLAB with appropriate initial guess 
values chosen for the coefficients. 
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Fig. 6.  Steady state transverse displacement vs. shaft speed obtained from 
ANSYS for case 1 data. 
 

 
Fig. 7. Steady state rotary displacement vs. shaft speed obtained from 
ANSYS for case 1 data. 

 The optimized functions for the steady state transverse 
and rotary displacements that fit the actual data points 
within an error of 1 ! 10�� are, respectively, given by 

 
2

94 2
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  (8)                                                                                                                             

2

4 2

0.00000295723
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(

16.0832
)

4
B

ωω
ω ω

=
+−

   (9) 

 Substituting the expression for ���� and ����, in the 
power balance equation #� 
 #� and simplifying the 
expression we get the following equation with the supply 
voltage �� as a variable parameter. 

24 8 3 6 6 4

9 2 12 24 9 28 7

31 5 34 3 36

10 ( 1.83 6.94 10 9.87 10

6.232 10 1.48 10 5.31 10 2.013 10

2.86 10 1.81 10 4.280694 1

)

0

sV ω ω ω
ω ω ω

ω ω ω

× − + × − ×

+ × − × + × − ×
+ × − × + ×

(10)                                                                       

 We use the above polynomial to define a transfer 
function between a fictitious input-output pair as follows.  

3 6

9

8 6 4

12

4 6

10 1

2

2

9 7 5

3

1.83 6.94 10 9.87 10

6.23 10 1.48 10( )
( )

( ) 5.31 2.01 10 2.86 10

1.80 10 4.28 10

N s
G s

D s

ω ω ω
ω

ω ω ω
ω ω

− + × − ×

+ × − ×
= =

− × + ×

− × + ×

  (11)             

where $ is the Laplace variable (representing �), %�$� and 
&�$� are two polynomials in $ and �� is a gain parameter 
so that the characteristic polynomial &�$� ' ��%�$� turns 
out to be same as Eq. (11). Now a root locus can be used to 
study the roots of the characteristic equation &�$� '
��%�$� 
 0.  In the root loci given in Fig. 8, there is a 
break-in point at 94V with frequency 31.8rad/s and another 
break-in point at 111V with frequency 30.8 rad/s. There is 

a break-away point at 145V with frequency 30.7rad/s. Till 
94V, there is only branch of solution on real axis which 
means there is only one positive real root of Eq. (10).  
From 94V to 111V, there are three branches of solutions 
on real axis which means there are three positive real roots. 
These roots indicate three possible shaft spin speeds at a 
given constant input voltage. Out of the three, two are 
stable solutions and one is unstable. These stability 
conditions are detailed in [6]. From 111V to 145V, five 
branches of root loci lie on the real axis which means there 
are 5 possible rotor spin speeds for a motor supply voltage 
within the specified range. Of these, three are stable roots 
and two are unstable. For �� ( 94V and  �� + 145V , only 
one positive real root exists; which means the rotor has a 
unique operating speed for a given motor supply voltage. 

 
Fig.8. Root locus to determine shaft spin speeds near first critical speed 
for various motor supply voltages. 

 The same results are shown in Figure 9 with the area 
around the Sommerfeld effect zoomed in Fig. 10. In these 
figures, only the real positive shaft spin speeds are plotted. 
For the Case 1 data set, the Sommerfeld effect near the 2nd 
critical speed is so severe that it requires a huge value of 
input voltage to overcome it. Moreover, the 2nd critical 
speed is near the stability threshold and it is therefore not 
suitable to operate a rotor in that regime. Other critical 
speeds are above the stability threshold and are thus not 
considered. 

 
Fig. 9. Shaft speed vs. voltage for case 1 data. 

 
Fig. 10. Enlarged view of Fig. 9. 
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Case 2 Result 

 When the second set of data is used, by using the 
method followed just before, we found that there is no 
Sommerfeld near the first critical speed, i.e., for all values 
of supply voltage required to drive the system through the 
first critical speed there is a unique rotor spin frequency. 
The disappearance of Sommerfeld effect in the first mode 
is due to the large values of external damping acting on the 
disk. This effect has been detailed in [6].  

ANSYS was used to obtain the steady-state transient 
response of the system near the second critical speed. The 
transverse and rotary displacement amplitudes in the range 
of the second critical speed are plotted in Figs. 11 and 12, 
respectively. Like earlier case, here we assume that most 
of the energy supplied by the motor goes to excite the 
second mode vibrations. 

 
Fig. 11.  Steady state transverse displacement vs. shaft speed obtained 
from ANSYS for case 2 data. 

 
Fig. 12. Steady state rotary displacement vs. shaft speed obtained from 
ANSYS for case 2 data. 

 For data fitting, the trial function of the following form 
is assumed for ���� 

    
3 2

4 2

(1) (5)

(2) (3) (4)

C C
T

f C C C

ω ω
ω ω

+=
+ +

              (12) 

Using MATLAB for least square fitting, the steady 
state transverse displacement can be approximated by  

2

4

3

12 132

0.477921 170.08968

11482377770 3022.6135 10 198

  
( )

93870.7 10
A

ω ωω
ω ω− + ×

= −

×
        (13)  

Note that this approximation is valid only when the 
operating speed is in the neighborhood of the second 
critical speed. Further note that the trial function has to be 
suitably chosen to minimize the error. Likewise, the trial 
function assumed for ���� is given as and the rotary 
vibration amplitudes in the neighborhood of second critical 
speed are expressed as 

       

( )
2

4 2

(1)

(2) (3) (4)

C
T

f C C C

ωω
ω ω

=
+ +

                     (14) 

2

11254

0.995675928267296 

5041391 132600 10
(

872007
)

10
B

ωω
ω ω

=
×+− ×

     (15) 

Substituting the expression for ���� and ����in the 
power balance equation #� 
 #� and simplifying the 
expression we get the following equation with the supply 
voltage �� as a variable parameter.   

35 8 41 6 46 4

51 2 55 28 11

31 10 35 9 36 8

41 7 41 6 46 5

51 3 6

`

5

( 2.89 10 1.5232 10 3.0061 10

2.64 10 8.674 10 ) 1.799 10

1.280 10 8.369 10 3.368 10

4.4202 10 2.2152 10 8.722 10

7.6468 10 2.5154 10

sV

ω ω ω
ω ω
ω ω ω

ω ω ω
ω ω

− × + × − ×

+ × − × × + ×
− × + × + ×

− × − × + ×
− × + ×

 (16) 

We use the above polynomial to define a transfer 
function between a fictitious input-output pair as  
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51 2 55
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36 8 41 7 41 6

46 5 51 3 56

( ) ( ) ( )

2.89 10 1.5232 10 3.0061 10

2.64 10 8.674 10
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8.722 10 7.6468 10 2.5154 10

G s N s D s

ω ω ω
ω

ω ω ω
ω ω ω
ω ω ω

=
− × + × − ×
+ × − ×

=
× − × + ×

+ × − × − ×
+ × − × + ×

 (17) 

with �� as the gain parameter. The roots of the 
characteristic equation &�$� ' �� ∗ %�$� 
 0 are shown in 
the root loci given in Fig. 13. 

 
Fig. 13. Root locus to determine shaft spin speeds near second critical 
speed for various motor supply voltages. 

In the root loci given in Fig 13, there is one break-in 
point at 1098.72V with frequency 358.23rad/s and a break-
away point at 1407V with frequency 362.57 rad/s. Till 
1098.71V, there is only branch of solution on real axis 
which means there is only one possible rotor speed for a 
given supply voltage. The same is true for �� + 1407V.  
Between 1098.72V to 1407V, there are 3 branches on real 
axis which means there are 3 possible rotor spin speeds for 
a given supply voltage in this range. Of these, two are 
stable solutions and one is unstable.  These results are 
shown in Figure 14 with the area around the Sommerfeld 
effect zoomed in the inset. 
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Fig.14. Shaft speed vs. supply voltage for case 2 data. 

III.  TRANSIENT ANALYSIS OF NON-IDEAL SYSTEM 

ANSYS and other FE software do not support transient 
analysis of rotor dynamic systems with source-loading, 
i.e., non-ideal drives. Therefore, we seek alternative 
modeling approach for the system. Because we are looking 
at energetic consistency in the system model, we use bond 
graph modeling. A bond graph (BG) model naturally 
represents consistent power balance across sub-system 
boundaries [10, 11]. We developed a one-dimensional 
finite element bond graph model of the rotor system with 
lumped parameters. The bond graph model automatically 
incorporates appropriate reactions on the drive and the 
drive dynamics gets coupled to the rotor dynamics. The 
multi-energy domain coupling of the electrical DC motor 
to the mechanical rotor-dynamic system is elegantly 
represented in a bond graph form. However, it may be 
noted that modal analysis is more conveniently performed 
using ANSYS than bond graph tool. Here, we use both FE 
and bond graph models and integrate both the approaches 
taking advantage of both the methods. 

A. Bond graph model of the system 

To correctly obtain the natural frequencies, a bond 
graph model based on Euler-Bernoulli beam theory 
requires too many elements and the model becomes 
computationally inefficient. Therefore, we have developed 
a Raleigh beam model of the rotor shaft by including the 
diametral rotary inertias, gyroscopic moments and rotating 
material damping in the model.  

The shear force and bending moments developed in a 
beam element are dependent on both the transverse and the 
rotary displacements at two ends of the element. The 
elastic forces in the x-z plane and y-z plane are given by 
[12] 
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K

 

(18) 
where � and / denote shear force and bending moment, 
respectively, � and � are the transverse displacements 
along the respective directions, � and � denote the 
rotations along � and � directions, respectively, and 

subscripts � and � denote the left and the right ends, 
respectively.  

When material damping is considered, the rates of the 
displacements also influence the shear force and bending 
moments. The beam internal damping generates forces and 
moments due to strain rates. It is modeled in a rotating 
frame whose z-axis is coincident with that of the fixed 
frame [8, 12]. The damping forces in the rotating frame are 
given by 

( )( ) ( )

( )( ) ( )
3

3

T Ti
xL yL xR yR L L R R rd r

T T
i

L L R RxL yL xR yR d rr

EI
V M V M x x

L
EI

V M V M y y
L

µ ψ ψ

µ φ φ

=

− − = − −

K

K

ɺ ɺɺ ɺ

ɺ ɺɺ ɺ

  (19) 
where internal damping parameter �� is a material 
constant, subscript 0 denotes damping, and subscript 1 
indicates that the values are in the rotating frame. The 
frame transformation of forces and velocities are given by            

( ) ( )cos sin

( ) ( )sin cos

cos sin sin cos

sin cos cos sin

x d x d

y d y df r

r f f

V V

V V

x x x

y y y

θ θ
θ θ

θ θ θ θ
θ

θ θ θ θ

    =    −    

−       = +       − − −       

ɺ ɺ
ɺ

ɺ ɺ

    

                                                                                      (20) 
where � = 2�03 is the angle between the fixed and the 
rotating frames measured about the z-axis. The rotational 
velocities and moments are likewise transformed using the 
same transformation formulae. 

The bond graph model of the rotor system is developed 
with 21 one-dimensional finite elements. We develop sub-
models for different parts of the model and assemble them 
to obtain the integrated model. 

• Shaft sub-model 

 The shaft segment models the stiffness and damping of 
the shaft element.  A C-field and an R-field are used to 
model Eq. (18) and (19) in Fig. 15. A bond with a circle 
over it indicates a vector bond of dimension 5. These 
vector bonds are split into scalar bonds and vice versa 
through demux and mux elements indicated by thick 
vertical lines. The four transformers with moduli −1 
implement the negative signs in the expressions for 
bending moments (/�) and rotations (�) about the x-axis.  

 

Fig. 15. Bond graph sub-model of a shaft segment. 
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 The CTF block models the coordinate transformations. 
This block detailed in Fig. 16 implements a transformer 
junction structure, which being power conservative 
simultaneously models both force and velocity 
transformations. Moreover, it generates the source loading 
through bonds connected to 1�	  junction in Fig. 16. 

 
Fig. 16. Linear and angular velocity (force and moment) transformation  

sub-model. 

• Hub sub-model 

This models the inertia of the shaft element, which is 
equivalent to the nodes of the FE model. The four I 
elements in Fig. 17 model the nodal masses (/) and rotary 
inertias (4�� = 4
�/2), where 4
� is the polar moment of 
inertia of the shaft segment. Also, the gyroscopic coupling 
between the rotations is modeled by using a gyrator. The R 
elements in the model implement distributed external 
damping (��) which are absent in the present study. 

 
 Fig. 17. Bond graph sub-model of the hub element. 

• Disk sub-model 

This models the rotor disk. It is an extension of the hub 
sub-model and includes the additional inertia due to the 
rotor. Also, the eccentricity of the rotor is modeled here. 
The mass centre and geometric centre of the disk are 
shown in Fig. 18, where � is the eccentricity and 5 is an 
arbitray initial phase. 

The position of the mass center (��, ��) can be 
expressed in terms of the position and rotation around the 
geometric center (�, �) as follows: 

�� = � + � cos�� + 5� , �� = � + � sin(� + 5)   (21)  

 
Fig. 18. Shaft cross section showing mass centre and geometric centre. 

 
Fig. 19. Bond graph sub-model of the rotor disk. 

 

• Integrated model 

The rotor system model with offset disk, boundary 
conditions and the DC motor drive connected to the left 
end is shown in Fig. 20.  

 
Fig. 20. Bond graph model of the integrated rotor system with DC motor 
drive. 
 

The ideal pin-pin supports are modeled with zero flow 
sources on transverse velocities. For free rotations about 
the pins, half of shaft element rotary inertia is considered at 
the ends. The R element on the right boundary condition 
model indicates right bearing damping. The motor supply 
voltage is modeled by Se element which is connected to a 
1-junction where the R element models armature resistance 
and GY element models DC motor characteristics. In the 1 
junction on the other side of the GY element, the I element 
models total polar moment of inertia of the rotor shaft 
system (the torsional vibrations have been neglected in this 
model) and the R element models left bearing damping. 
The blocks S1, S2 … model shaft segments, H1, H2 … 
model hubs, and D14 models the rotor disk. 
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B.  Simulation Results 

To study Sommerfeld effect near the critical speeds, 
numerical simulations were carried out using the 
developed bond graph model. The model parameters are 
already given in Table 1. Additional parameters used in 
bond graph are motor characteristic, motor resistance, 
bearing resistance.  The model was validated by comparing 
the results to those from the FE model. For ideal drive 
simulation, the motor model was replaced by a constant 
source of flow (SF:�). The natural frequencies of the rotor 
system at any given spin speed was obtained by giving 
arbitrary initial conditions to the disk and then taking the 
FFT of the response. The natural frequencies from the 
bond graph model closely matched those from the FE 
model and also the stability threshold was found to be the 
same. The validated model is then used to study 
Sommerfeld effect with the full DC motor model. 

Case 1 Simulation 

The simulation is done to validate the results plotted in 
Figs. 9 and 10 which reveal that the range of speed 
between 30.6288 rad/s and 31.7665 rad/s near the first 
critical speed cannot be achieved. The non-dimensional 
variables used to plot the results are 
6 
 2��


7�
 ' �
 �8
9�: , ; 
 1.58
7�
 '�
 , and 
= 
 ��/��, where �� is the first critical speed and 9 is the 
acceleration due to gravity. In the coasting up simulation 
shown in Fig 21, it can be seen that the shaft speed is 
caught at the critical speed (= ≅ 1) due to insufficient 
supply voltage (�� 
137V) and this gives rise to large 
amplitude displacements. The results shown in Fig. 22 are 
for supply voltage �� 
137.1V, where it can be seen that 
the displacements reach a peak value near the critical 
speed and then reduce to lower value after the shaft speed 
escapes the Sommerfeld effect and jumps from the critical 
speed to a higher value. The simulations show jump during 
coasting up operation at �� 
137V whereas the 
theoretically predicted jump voltage was �� 
145V (Fig. 
10).                                                                                                                          

 
Fig. 21. Transient response during coasting up before the jump for case 1 
data. 

 During coasting down, the jump was predicted at 
�� 
94V (Fig. 10) whereas simulations show jump at 93V 
(results not shown). The discrepancies can be attributed to 
the steady-state assumptions during the theoretical 
formulations. The results tend to match when the motor 
supply voltage is quasi-statically varied. However, it is 
very time consuming and those results are not reported 
here.  

 
Fig. 22. Transient response during coasting up after the jump for case 1 
data. 

 The Sommerfeld effect characterization obtained from 
simulations is shown in Fig. 23, which is close to the 
theoretically predicted characteristics given in Figs. 9 and 
10. However, the unstable braches shown in Figs. 9 and 10 
cannot be obtained through simulations. 

 
Fig. 23. Shaft speed vs. voltage graph showing both coasting up and 
coasting down operation 

Case 2 Simulation    

The simulation is done for range of voltages to obtain 
shaft speeds in the vicinity of second critical speed. The 
non-dimensional variables used to plot the results are 
6 
 0.8�



	7�
 ' �
/�8
9�, ; 
 1.58
7�
 ' �
 , and 
= 
 ��/�
, where �
 is the second critical speed and 9 is 
the acceleration due to gravity. The results in Fig. 24 are 
shown for �� 
1497.5V where the rotor spin speed gets 
caught at second critical speed = 
 1. The results do not 
show steady final values because the second critical speed 
is very close to the stability threshold speed and thus the 
decay rate is very small (transients persist).         

 
Fig. 24. Transient response during Coasting up before the jump for case 2 
data. 
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 The results in Fig. 25 are for �� 
1497.5V which 
shows escape from the Sommerfeld effect at the second 
critical speed. However, after escape, the spin speed is 
caught at the stability threshold speed [6, 8].  Note that in a 
non-ideal system with limited input power, the vibration 
amplitudes are finite even when the system is unstable [8]. 
The supply voltage at which jump is predicted from 
theoretical analysis is �� 
1407.5V. The simulation shows 
jump at �� 
1092V during coast down operation whereas 
the theoretical predictions give the jump at �� 
1098.72V. 
The error may be attributed to neglecting the eccentricity 
effect during calculation of rotary inertias.  

 
Fig. 25. Transient response during Coasting up after the jump for case 2 
data. 
 
 The composite figure showing Sommerfeld effect 
characterization from simulations (with missing unstable 
branches) is shown in Fig. 26. 

 
Fig. 26. Shaft speed vs. voltage graph showing both coasting up and 
coasting down operation for case 2 data. 
 

CONCLUSIONS 

 We have predicted the Sommerfeld effect 
characteristics near critical speeds in a continuous shaft 
with offset disk eccentric rotor system driven through a 
DC motor by using a semi-analytical method which 
combines FE model modal analysis with input-dissipation 

power balance constraint. This is computationally very 
efficient and can be applied to any general rotor dynamic 
system with multiple disks. The semi-analytical approach 
predicts both the rotor spin speed and vibration amplitudes 
during coasting up and down operations for any given 
motor supply voltage (or torque). The results have been 
validated through transient analysis performed with aid of 
a bond graph model. The transient analysis gives 
maximum vibration amplitudes reached during the passage 
through critical speeds.  

The prediction of Sommerfeld effect characteristics is 
very important from the point of view of actuator sizing in 
a rotor dynamic system designed to operate in super-
critical region. One can a priori decide on the required 
motor power and its other ratings needed to drive the rotor 
through the resonance for a given maximum allowable 
eccentricity. On the other hand, if the motor specifications 
are known then one can determine the maximum allowable 
eccentricity and specify it for rotor balancing.  
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