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Abstract— Rolling element bearings are widely used in 
rotating machines and their faults can lead to excessive 
vibration levels and/or complete seizure of the machine. 
Under special operating conditions such as oscillating rotor 
motion or full rotations with non-uniform speed, the 
available fault diagnosis methods cannot be applied for 
bearing fault diagnosis. Further to that, fault symptoms in 
some machines which operate at very slow speed in the range 
of fractional rpm cannot be extracted through usual 
measurement and signal processing techniques. Typical 
examples are LD furnace, heavy rolling mill, etc.  

In extremely slow speed or variable speed operation, 
rolling element slip becomes predominant. In this article, we 
present a bond graph model of the rolling element bearing 
by taking into account the nonlinear contact stiffness, 
contact friction, cage dynamics, rolling element pre-
compression and localized faults. The rotor is supposed to be 
either velocity or torque driven where the external load 
decides the rotor speed. 

Simulation of the bond graph model developed here 
yields the vibration signatures corresponding to specific fault 
or combinations thereof. The simulation model outputs are 
used to fine-tune diagnosis scheme which consists of two 
post-processing steps. The vibration signature is 
concurrently acquired with the instantaneous angular 
velocity or position. For oscillating motion, we use a simple 
potentiometer with appropriate engagement with the rotor 
shaft. In the first step of post-processing, it is assumed that 
when a fault is encountered, impact leads to ringing the 
bearing natural frequencies. Thus, the generated time-
domain vibration signal is filtered through a band-pass filter 
whose pass-band contains the bearing natural frequency. In 
the second phase, the vibration signature as a time-series 
data is converted to a dataset of vibration amplitude versus 
the angular position. The 360 degree angular position range 
is then segmented into small steps of 1 to 5 degree bands. The 
averaged vibration amplitudes at various angular position 
bands are then plotted in the form of a histogram. The 
features of this histogram are then compared to bearing 
characteristic angles (mapped form of bearing characteristic 
frequencies to eliminate explicit dependence on time or 
frequency) to isolate the faults. 

Keywords— Rolling element bearing; Machinery fault 
diagnosis; Bond graph; Signal processing. 

I.  INTRODUCTION  

Faults which typically occur in rolling element 
bearings are usually due to localized defects in the outer-
race, inner-race, the roller, or the cage. Such defects 

generate series of impacts every time these defects come in 
contact with the mating surfaces. These impulses excite the 
entire system including the bearing, the sensor and the 
structure where the bearing is mounted. Through different 
signal processing techniques, the bearing characteristic 
frequencies (BCF) can be identified from vibration signals. 
There is abundant literature on diagnosis of rolling element 
faults through vibration analysis [1]. Several signal 
processing steps may be used to extract the relevant 
features from the acquired measurements before the 
diagnosis scheme can be applied [2]. There are different 
techniques in time and frequency domain such as high-
frequency resonance (HFR) [3-5], spectral kurtosis [6], 
minimum entropy de-convolution [7], Teager energy 
operator (TEO) [8, 9], higher order spectral analysis [10], 
shock pulse and spike energy analysis [11-12], etc. which 
are generally used for diagnosis of faults in rolling element 
bearings under different operating conditions. In time 
frequency domain, techniques like Hilbert transform and 
wavelet transform are widely used in diagnosis of rolling 
element bearing faults [13-15]. 

In laboratory scale, one may introduce deliberate 
bearing faults and then take corresponding measurements 
from the machine operating with the faulty bearing. Such 
fault simulator systems are commercially available for 
laboratory use. However, it is usually impossible to build a 
database of bearing fault signatures for industrial 
machines. It may take years for a good bearing to develop 
any kind of fault. Therefore, a model of the machine with 
bearings can be used to generate a rich database of 
measurements with variety of faults in bearings and other 
machine components [16, 17]. Moreover, a model is 
scalable and any number of faults can be introduced in it. 
A model-based scheme to build up a fault monitoring 
system is an economical solution.  

 In dynamic modeling of rolling element bearings, lot 
of work has been reported: quasi-static modeling in [18], 
generalized equation of motion in [19, 20], multi-body 
dynamics model in [21, 22], and defect geometry modeling 
and evolution in [23, 24]. 

II. BALL BEARING K INEMATICS 

 The kinematic modelling requires only bearing 
geometry parameters. These are the diameter of balld , 
pitch diameterD , frequency of outer race rotationfo , 

frequency of inner race rotationif , number of ballsN , 

and contact angle ψ (Fig. 1). General expression for ball 
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pass frequency for inner race (BPFI), ball pass frequency 
of outer race (BPFO) and ball spin frequency (BSF) are, 

( )( )BPFI 1 cos( ) 2o if N f f d D ψ−= +                    (1)  

 ( )( )BPFO 1 cos( ) 2o if N f f d D ψ−= −                     (2) 

( ) 2

BSF 1 cos( )
2

o iD f f d
f

d D
ψ

−   = −     
                    (3) 

 
Fig.1. Geometry of rolling element bearing. 

III.  DYNAMIC MODELLING OF ROLLING ELEMENT BEARING 

It is difficult to formulate equations of motion of 
different parts of rolling element bearings and evaluate 
their performance under extreme conditions such as very 
low speed, very high speed, and in presence of fault in any 
element. However, some simplification of kinetics based 
on engineering approximations can be employed to 
generate a sufficiently accurate model. 

A rolling element bearing consists of rolling element, 
inner race, outer race and cage as its principal parts. 
Interaction of many factors determines the rolling element 
bearing’s dynamic characteristics. In this article, the 
system is modeled as a multi-body system. Rolling 
element bearing frictional force is a function of speed, 
contact deformation, contact angle and inertial loading.  
We have included nonlinear contact stiffness, contact slip, 
traction between elements, drive torque, cage dynamics, 
pre-compression and localized faults in the model. The 
effects due to axial movement and lubrication are 
neglected. The developed multi-body dynamics model of 
the deep-groove ball bearing/roller bearings considers 
planar motion of the rolling elements. Thus, each rolling 
element has three degrees of freedom. Likewise, the inner 
race, outer race and the cage have three degrees of 
freedom each. The rolling elements are constrained to 
move within the cage. The cage center, inner race center 
and outer race centers are at different locations as decided 
by the dynamics of the system. The instantaneous 
locations of these centers are used to compute the contact 
points of the rolling elements with the races. Faults in the 
outer race, inner race and the rolling elements have been 
modeled as small notches. The contact between all the 
mating surfaces is considered as surface contact. 

A. Contact and Friction Force Modelling 

The model in consideration (Fig. 2) has outer race, 
inner race and rolling elements, whose positions are 
defined in an inertial reference frame (X-Y frame). The 
positions of centre of inner race, outer race, and ball with 

respect to inertial frame are designated as

( ) ( ) ( )1 2, , , ,  and ,i i o o b bO x y O x y C x y , respectively.  

 
Fig.2. Contact forces in rolling element bearing. 

 
The contact between inner race and i-th ball is at

( ),pi piB x y , and contact between outer race and ball is at

( ),po poA x y .  The radius of inner race, outer race and ball 

are 2, 2, and 2i i o o br D r D r d= = = , respectively, and the 

angle of rotation of outer race and inner race are and β α , 

respectively.  
The positions of the contact points, neglecting the 

local deformations, can be defined as 
cos( ) sin( )

sin( ) cos( )

cos( ) cos( )

sin( ) sin( )

pi i i b b

pi i i b b

po o o b b

po o o b b

x x r x r

y y r y r

x x r x r

y y r y r
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β β

= + = − 
 = + = − 
 = + = + 
 = + = + 

            (4) 

The velocity at point B on the ball in tangential 

direction ( tV ) and normal direction (nV ) can be written as 

  sin cos , cos sint b b b b n b bV x y r V x yα α θ α α= − + − = +ɺɺ ɺ ɺ ɺ   (5)  

where, b bθ ω=ɺ  and angle ( ) ( )( )1tan b i b iy y x xα −= − − . 

The same point’s velocities on the inner race are given as 

 sin cos , cos sint i i i i n i iV x y r V x yα α θ α α= − + + = +ɺɺ ɺ ɺ ɺ    (6) 

The difference between the tangential velocities (slip) 
produces the friction. If there is no slip then there is pure 
rolling with no loss of energy. We assume lubricated 
bearing and thus viscous friction between the mating 
surfaces and by taking fR as the effective viscous 

resistance,                                                                

( )cos sin ( cos sin )i i i i b b b bt fF R y x r y x rα α θ α α θ= − + − − −ɺ ɺɺ ɺ ɺ ɺ

( ) ( ) ( )sin cosb i b i i i b bf f fR x x R y y R r rα α θ θ= − − − + +ɺ ɺɺ ɺ ɺ ɺ   (7) 

Similarly, we can derive the equation for normal force 
contact point A and the normal and tangential force at 
point B. As two bodies having different radii of curvature 
in a pair of principal planes are in surface contact with 
each other, the force acting at the contact surface 
according to Hertzian contact theory [25] is given as 

 for 0

0      otherwise  

nK
P

δ δ >
= 


                                   (8) 
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where P = roller/ball-raceway normal load, K = load 
deflection factor and n= load deflection exponent which is 
3 2 for ball bearing and 10 9for roller bearing.   

 The contact compression at the point of contact B 
depends on the position of the ball with respect to the 
centre of the inner race. So 

   2 2( ) ( )b i b ii i br r x x y yδ = + − − + −                   (9) 

Similarly, contact compression at contact point A is 
2 2( ) ( )o b b i b i or x x y y rδ = + − + − −                    (10) 

where 2o i b pr r r δ= + −  with pδ
 
being the rolling element 

pre-compression. 
Note that the contact compression depends on the 

angular position of the rolling element, which is governed 
by the cage rotation, with the maximum deformation 
occurring in the load zone.  

B.  Modelling of  Localized  Faults 

Faults are modelled using the principle presented in 
[16]. Outer race fault is modelled by taking a spall of 
depth dC  with an angular width of dφ∆ . When a ball 

reaches a defined angular positiondφ , there is a sudden 

loss of contact as the ball enters the spall, and contact is 
regained instantly when it exits the spall. This gives a 
large amount of impulsive forces due to sharp changes in 
acceleration caused by sudden loss and gain of contact. 
The spall is modelled as a step function.  In the case of the 

thj  ball, when d j d dφ φ φ φ< < +∆ , 

( )2 2( ) ( )b i b i o do br x x y y r Cδ = + − + − − +        (11)   

 An inner race fault is modelled in similar fashion. It is 
defined as a spall of depth dC and angular width of dφ∆ . 

In this case, since the fault is on the inner race surface, it 
rotates with the same speed as that of inner race. Thus the 
value of dφ  depends on the angular rotation of the shaft. 

( ) 2 2( ) ( )i b d b i b ii r r C x x y yδ = + − − − + −
        

  (12)     

In the case of ball/roller fault, the spall rotates at the 
same speed as the rolling element at ball spin frequency 
(BSF). The position of spall is defined as 

0s spintφ ω φ= +
         

                         (13) 

where sφ  is the position of spall and
 0φ  is the initial 

starting location of spall.  
The kinematic modelling considerations in [16] are 

not suitable in a dynamic modelling scenario with slip and 
radial as well as tangential movement of raceways and 
rolling elements. The inner race speed, cage speed and 
BSF may not be constant during dynamic loading, 
especially when the shaft is torque driven.  Therefore, we 
adopt a separate geometric modelling scheme. The spall 
starting and ending positions on the element are tracked 
for this purpose.  

For a fault on in the j-th rolling element, if the spall 
starts at point S1 and ends at point S2 then the positions of 
the spall beginning and end may be written as follows:  

          

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

11
0

11
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22
0

22
0

sin  

 cos

sin

cos

t

b b b S bS

t

b b b S bS

t

b b b S bS

t

b b b S bS

x x r d

y y r d

x x r d

y y r d

τ θ φ θ τ τ

τ θ φ θ τ τ

τ θ φ θ τ τ

τ θ φ θ τ τ

= − +∫ 

= + +∫ 

= − +∫


= + +∫


ɺɺ

ɺɺ

ɺɺ

ɺɺ

       
(14) 

where ( )
0

t

bb dθ θ τ τ= ∫ ɺ  is the angle rotated by the rolling 

element, and 1Sφ  and 2Sφ  are, respectively, the initial 

angular positions of the spall beginning and end with 
respect to the rolling element. The contact deformation at 
outer race contact is modelled by Eq. (11) when the line 
connecting the rolling element centre and the outer race 
centre lies within two lines connecting the outer race 
centre to the spall start and end positions and it also lies 
between two lines connecting the ball centre to the spall 
start and end positions. Otherwise, Eq. (10) is used. 
Likewise, contact with inner race considers a line 
connecting inner race centre to the rolling element centre 
and accordingly, one of Eqs. (9) and (12) is used to find 
the contact deformation. This modelling dynamically 
updates the contact in fault zones for any general motion 
of the raceways and rolling elements. 

The contact with spalls in the outer and inner race 
are modelled in similar way by tracking the positions of 
spall start and end points and then considering that the 
suitable line connecting the rolling element centre to the 
raceway centre lies within the angle spanned by the spall 
start and end points. Note that one needs to use signed 
arctan function (generally referred to as atan2 function) 
for correct determination of spall contact. 

Note that for rolling element fault, the loss of contact 
is detected twice for one revolution of the rolling element, 
i.e. once during contact with the inner race and another 
during contact with the outer race. As the curvatures of 
the inner and outer races are not the same, the values of 
angular widths of the fault dφ∆ are not same for both 

races. The depths to which the inner and outer races enter 
the spall are also affected by this curvature difference. 
The inner race will contact deeper and longer as compared 
to the outer race. 

IV.  BOND GRAPH MODEL 

The bond graph model [26] of the bearing consists of 
four different sub-models, i.e., inner race, outer race, 
roller and cage.  The entire system is modeled as a spring 
mass system (Fig. 3.) with the outer race of the bearing 
supported on a fixed platform through springs and 
dampers attached to it in X and Y directions. These 
springs and dampers model the structural stiffness and 
damping, including that of the bearing housing. Each 
rolling element is considered as a point mass which can be 
in contact with the inner race and outer race through two 
contact springs. The inner race is anchored to the inertial 
frame in X and Y direction through springs and dampers 
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which model the shaft bending stiffness and damping. The 
angular speed of the shaft is considered to be equal to that 
of inner race. 

 
Fig. 3. Bearing as a multi-body system. 

A. Inner race Submodel 

The inner race is modeled as a spring mass system 
anchored to the inertial frame [16] as shown in Fig. 4. It is 
driven by a constant angular velocity source, i.e., the 

velocity of the driven shaft( )ω θ= ɺ  . It has three degrees of 

freedom.   

 
 

Fig. 4.  Shaft model along with inner race. 
 

 
Fig. 5. Bond graph sub model of inner race and shaft. 
 

Its bond graph is shown in Fig. 5 where element 

shaftI : J  models rotary inertia, two elements shaftI : M  

model linear inertias in X and Y directions, two SF:0 
elements model inertial frame anchoring, shaftSE: M g−  

models self-weight with g as acceleration due to gravity, 

and shaftC: K  and shaftR: R  elements model the shaft 

bending stiffness and damping, respectively. The SF: ω  
element is replaced by a source of effort and a new R-
element for bearing rotational damping is added to the 
corresponding junction to generate a torque driven model. 
This sub-model is interfaced to other sub-models through 
port 1 (shown within a circle). Here the interface port 
connects a set of bonds and thus, it is a vector bond port. 
This interface port will connect the inner-race sub-model 
to rolling element bearing sub-models. 

B. Outer race Submodel 

 
Fig. 6. Model of outer race with pedestal. 

 

 
Fig. 7. Sub model of outer race using bond graph. 

 
The outer race is fixed on the platform and it does not 

rotate. It can have translational motions along X and Y 
directions (Fig. 6). Its bond graph sub-model is shown in 
Fig. 7, where two pedestalI :  M  elements model linear 

inertias of the bearing housing in X and Y directions, two 
SF: 0 elements model inertial frame anchoring, 

pedestalSE: M g−  models self-weight, pedestalC :  K
 

and   

pedestalR :  R  elements model the structural stiffness and 

damping of the housing, respectively. This sub-model is 
interfaced to other sub-models, i.e., the rolling element 
sub-models, through port 2 (shown within a circle). 

C. Cage Submodel 

The cage is modeled as a single rigid-body as shown 
in Fig. 8.  Rollers or balls fit into the cage at various 
places. The contact with each rolling element is modeled 
in a separate sub-model. Therefore, two separate cage 
sub-models are created. The main cage model includes the 
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cage inertia whereas the additional cage sub-models are 
inertia-less models which simply model the contact with 
the rolling elements. The main cage sub-model is shown 
in Fig. 9 where element cageI : J

 
models rotary inertia, two 

elements cageI : M model linear inertias in X and Y 

directions, and cageSE: M g−  models self-weight. 

This sub-model is interfaced to additional cage sub-
models through port 4 (shown within a circle) and to 
rolling element sub-models through port 3 (shown within 
a circle). 

 
Fig.8. Cage model with ball. 

 

 
Fig.9. Sub-model of main cage. 

 
Elements jointC: K  and jointR: R  model the contact 

stiffness and damping, respectively, between the cage and 
the rolling elements. It is assumed that the rolling 
elements (here rollers) are fixed to the cage through pin 
joints. The pin deformation transfers the force between the 
cage and the rolling element. Here, variable cage 2r D=  is 

the cage radius or pitch circle radius and nβ   is the 

angular position of the n-th pin on the cage. 
The additional cage sub-model is shown in Fig. 10. It 

is similar to the main cage sub-model, but inertias are 
missing. In this sub-model, ports 4 and 5 interface with 
main cage or other additional cage sub-models. In fact, the 
additional cage sub-model is coupled to the main-cage 
and other additional cage sub-models in such a way (See 
Fig. 11) that they share the same linear and rotary velocity 
(adjacent 1-junctions can be merged to single 1-junction).  
Note that each of these sub-models allows connection to 
one rolling element sub-model through port 3. 
 

 
Fig.10. Additional cage sub-model. 
 

 
Fig.11. Word bond graph of cage. 

D. Rolling Element Submodel 

The rolling element is modelled as a point mass with 
two nonlinear contact stiffness and dampers as shown in 
Fig. 12. Here, ports 1 and 2 (shown within circles) 
connect to inner and outer race sub-models, respectively, 
and port 3 (shown within circle) connects to either main-
cage or additional cage sub-model. Element ballI : J  

models rotary inertia, two elements ballI : M model linear 

inertias in X and Y directions, and ballSE: M g−  models 

self-weight. The inner race is in contact is at point B and 
the outer race contact is at the point A as already shown in 
Fig. 2. 

 

 
 

Fig.12. Bond Graph sub model of rolling element (Ball). 
 
The non-linear contact forces along normal direction 

are modelled by two effort sources 1.5
ball 1SE: K δ−  and

1.5
ball 2SE: K δ− , where 1δ  and �� are the deformations at 

the inner and outer race contacts, respectively. If there is 
loss of contact, i.e.,  < 0,   1,2i iδ ∈  then, the 
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corresponding source of effort is made zero. These contact 
deformations are obtained from measurements through 
flow detectors (Df elements). In addition, the contact 
damping is modelled through two ballR: R  elements. The 

roller model permits slip at the point of contact between 
the inner and outer races. The frictional force caused due 
to this slippage is a combination of viscous damping (due 
to the presence of lubricant) and Coulomb damping (due 
to metal on metal contact). In this sub model, the damping 
effect is mainly assumed to be viscous type and hence 
energy dissipation at the contact points is achieved using 
two viscous damping elements fR: R . This damping 

generates the driving force to spin the rolling elements. If 
there is loss of contact then the value of fR   is switched 

from its nominal value to zero and vice versa, in a way 
similar to Eq. (8). 

The various transformer elements used in the sub-
model are used to compute the normal and tangential 
velocities as given by Eqns. (5), (6) and (7) for inner race 
contact and their extensions for outer race contact. The 
variables 1L  and 2L   represent the contemporary distance 
between the rolling element centre to the inner and outer 
race centres, respectively. The transformers used in upper 
part of the model are simply direction cosines used in 
Eqns. (5) and (6) (and their equivalent equations for outer 
race) whereas those in the lower half of the model are 
those appearing in Eq. (7) (and its equivalent form for 
outer race contact) to compute the slip between the rolling 
element and the raceways.  

E. Integrated Model of Rolling Element Bearing 

The complete bond graph model of the rolling element 
bearing is obtained by assembling the sub models into a 
form shown in Fig. 13. If there are n number of rolling 
elements then one needs that many rolling element sub-
models, one main cage sub-model, n-1 numbers of  
additional cage sub-models, and one each inner and outer 
race sub-models. 

 
Fig.13. Word bond graph of rolling element bearing 

V. SIMULATION RESULT 

The bond graph model is simulated with the following 
geometric data: ball radius ball 0.2 cmr = , pitch diameter

3.4 cmD = , fault depth d 1.0 mmc = , fault angular width 

or span of 0.05 rad, number of balls N=8, ball pre-
compression P 0.2 µmδ =  and contact angle 0ψ = . The 

other parameters in the multi-body model of the bearing 
are given in Table I. 

We simulate the following scenario of periodic shaft 
motion: the shaft rotates with angular speed 0.1047 
rad/sec (1 RPM) for 24 s duration, stops rotating (dwells) 
for 5 s duration, reverses with angular speed of 1 RPM for 
24 s duration and further stops (dwells) for 5 s duration. 
This cycle is then repeated. In this scenario, the shaft 
never completes one cycle of revolution. Moreover, the 
motion is oscillating, i.e., not in one direction, and the 
shaft angular speed is low. This specific scenario is 
inspired from the motions in the main shaft of a LD 
furnace bearing. Diagnosis of rolling element faults in 
such a scenario is a difficult task as will be shown in the 
next section. 

TABLE I.  MASS,STIFFNESS AND DAMPING OF 
BALL ,PEDESTAL,CAGE WITH PIN AND SHAFT 

Part  Mass (kg) Stiffness(N/m) Damping (Ns/m) 
Ball  8.37×10-5 9.92×109 1376.8 
Pedestal  with 
outer race 

12.638 15.1×106 2210.7 

Cage with pin 0.05 1×105 100 
Shaft  with 
inner race 

6.2638 7.42×108 1376.8 

 
The simulated force (proportional to acceleration) 

along y-direction in the pedestal and angle of inner race 
rotation vs. time for outer race, inner race and ball faults 
are shown in Figs. 14(a), 15(a) and 16(a), respectively. 
The reason for plotting the pedestal force in the y-
direction is threefold: (1) usually, one measure 
accelerations using an accelerometer for fault diagnosis, 
(2) the pedestal is the most convenient place to mount the 
accelerometer, and (3) the rotor weight acts in y-direction 
and the fault signatures are large when measured in the 
load zone. The force signal is filtered through a band-pass 
filter placed around the bearing natural frequency. This 
removes noise in the signal, if any.  

 
Fig.14(a). Simulated force in pedestal and angle of shaft rotation vs. time 
for outer race fault. 

 
Fig.14 (b). Filtered signal for outer race fault. 
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The filtered signals corresponding to outer race, inner 
race and ball faults are shown in Figs. 14(b), 15(b) and 
16(b), respectively. We can see distinct impacts when the 
raceway strikes a fault.  

 
Fig.15 (a). Simulated force in pedestal and angle of shaft rotation vs. 
time for inner race fault. 
 

 
Fig.15(b). Filtered signal for inner race fault. 
 

 
Fig.16 (a). Simulated force in pedestal and angle of shaft rotation vs. 
time for ball fault. 
 

 
Fig.16 (b). Filtered signal for rolling element fault. 

VI.  DIAGNOSIS OF ROLLING ELEMENT BEARING FAULT 

IN UNSTEADY OPERATION. 

Note that usual frequency domain approaches (e.g., 
FFT or envelope spectrum) and time-frequency domain 
approaches (wavelet transform, etc.) cannot be applied 

when the inner race rotates at variable speed. For 
diagnosis of rolling element bearing faults during 
unsteady speed operation, one needs to measure the angle 
of rotation with time in addition to the vibration signal 
(acceleration or velocity of the pedestal). Then instead of 
performing a time or frequency domain analysis (in which 
fault transients become non-uniformly spaced) we can 
perform our analysis by using the angle of rotation in the 
place of time. Note that a fault is always encountered 
when the inner race rotates by a certain angle value 
irrespective of the speed at which it has been rotating. 
Thus, instead of looking at the time interval between two 
adjacent hits, we can look at the angle turned between 
those two hits.  
1) For outer race fault, on the average, 

( )( ) 1 2sN f d D− number of hits will occur for every 360 
degree or one revolution for any general speed of rotation 
in one direction, i.e., hits will occur at intervals of 
720 ( ( ))D N D d− degrees. 
2) For inner race fault, ( )( ) 1 2sN f d D+ number of hits 
will occur for every 360 degree or one revolution. They 
will occur at somewhat smaller intervals as compared to 
outer race fault, i.e., at intervals of 720 ( ( ))D N D d+
degrees. 
3) For rolling element fault, the hits will occur at still 
smaller intervals of ( )2 2360Dd D d− degrees. 

Thus, we will first collect angle turned vs. the 
vibration amplitude data. Then we can plot them in the 
form of a histogram (angle band vs. average vibration 
amplitude in that angle band). If it is found that there are 
distinct peaks in the histogram then, we can determine the 
intervals between the peaks and compare them to the fault 
characteristic angles defined in the above-mentioned three 
points. 

Note that in this method of diagnosis, since the shaft 
rotates partially, it is possible that only impact at a 
specific angle is obtained.  
In this case, histogram shows one peak which indicates 
some kind of fault. However, the type of the fault cannot 
be isolated. For fault isolation, two or more hits at 
different angles are required. 

For the chosen bearing geometry, the angular intervals 
of hits for different types of faults are 

     

( ){ }
( ){ }

( )2 2

Outer race fault = 720 102 degree, 

Inner race fault = 720 80.52 degree, 

and Ball fault = 360 42.94 degree.

N D d

N D d

dD D d

− =

+ =

− =

 

The band-pass filtered force signal from outer race, 
inner race and rolling element fault simulations (See Figs. 
14(b), 15(b) and 16(b), respectively) are plotted in 
histogram form with 1 degree angle bands in Figs. 17, 18 
and 19, respectively. 

In Fig. 17, two adjacent peaks occur at band numbers 
27 and 33. The difference 6 degrees corresponds to the 
fault width, i.e., the angle the inner race must turn so that 
a rolling element enters and exits from a spall. Likewise, 
the difference between adjacent peaks at bands 129 and 
135 is also 6 degrees. The difference between the groups 
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of adjacent bands is 129 − 27 = 102	degrees which is the 
fault characteristic angle for outer race fault. Thus, in a 
practical scenario, one can identify the fault from the 
peaks in the histogram.  

 
Fig.17. Normalised histogram for outer race fault. 

 
The groups of adjacent peaks in the histogram plotted 

in Fig. 18 are spaced at interval of 126 − 45 =

81	degrees. This matches with the fault characteristic 
frequency for inner race fault. Note that the amplitude 
levels in two groups of peaks are comparable for outer 
race fault whereas they are not so for both inner race and 
rolling element faults. This is because the hit for the latter 
two faults take place at different load zones. Also, the 
angle interval between the entry and exit into the spall on 
the inner race is smaller compared to that for the fault in 
the outer race.  

 
Fig.18. Normalised histogram for inner race fault. 

 

 
Fig.19. Normalised histogram for ball fault. 

 
The histogram for rolling element fault (Fig.19) shows 

the gap between the groups of adjacent faults at intervals 
of 83 − 40 = 126 − 83 = 43	degrees, which is the fault 

characteristic angle for the rolling element fault. Further 
to the variations in amplitude levels, one notices that the 
signals due to entry and exit from the spall are very 
closely spaced and indistinguishable. This is due to the 
high spinning speed of the rolling elements. 

VII.  CONCLUSION 

In this paper, we have presented a multi-body 
dynamics bond graph model of rolling element bearing in 
presence of raceway and rolling element faults. The model 
considers nonlinear contact stiffness, contact friction, cage 
dynamics, and rolling element pre-compression. For high-
speed rotation at constant speed in one direction, the 
simulated signal has the same basic characteristics as that 
of simulated and experimental signals reported in the 
literature [16]. However, the developed model is capable 
of simulating the response with variable speed/load 
operation such as that encountered in industrial 
applications.  

Under variable speed/load/torque operation, usual 
frequency and time-frequency domain bearing fault 
diagnosis methods are not applicable. A set of new post-
processing steps are thus proposed in which measurement 
of instantaneous angle and angular speed concurrently 
with the vibration amplitudes is desired. The proposed 
diagnosis framework has been explained in details and has 
been validated through simulated data. 

The major contributions in the paper can be outlined at 
follows: 

1) Development of a thorough multi-body dynamics 
model of the bearing with cage, roller, inner race and 
outer race, structural vibration, contact with impact and 
friction, etc. dynamics. The developed model can simulate 
both continuous and oscillating motions at unsteady 
speed. 

2) The diagnosis scheme has been modified to used 
fault characteristic angles in place of fault characteristic 
frequencies. This approach decouples the rotor speed 
from the diagnosis requirement. However, one needs to 
measure the instantaneous angle of rotation in this 
approach. This approach is suitable to analyze faults 
during (a) unsteady speed rotation and (b) oscillating 
motion. 

3) The developed diagnosis algorithm has been 
validated with simulated signals for various faults even 
when the simulated signal is willfully contaminated with 
Gaussian measurement noise. 
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