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Abstract—A novel lumped crack transfer matrix (LCTM)
and state vector based method is proposed in this paper for
identification of damage in the beam like structures. Transfer
matrix (TM) is a square matrix which contains all structural
and crack parameters such as crack depth and its location.
State vector at a node is the sum of internal and external
contributions of displacements, forces and moment at that
node on the structural element, when it is multiplied with
TM the state vector at the adjacent point can be obtained. A
cracked beam element is assumed as two intact beam elements
are connected by a hinge or torsional spring. The crack is
modelled as an element of zero length and mass but has elastic
properties. Hence the LCTM for the cracked beam element
is obtained by series multiplication of LCTMs for the intact
beam elements and that for the crack element. State vector is
formed at one node known as initial state vector from which
state vectors at other nodes are predicted by multiplying with
TM for the predicted values of crack parameters. Displacement
responses are measured at a few nodes in the structure. The
mean square error between measured and predicted responses
is minimized using a heuristic optimization algorithm with
crack depth and location as the optimization variables. Two
numerical examples a cantilever and sub-structure of a frame
with nine members are solved with multiple cracks in an
element. The TM algorithm is also validated experimentally.
The main advantage in this method is one or more cracks in
the single element can be identified.

Keywords – transfer matrix for cracked element; state vector;
crack detection; successive identification; particle swarm opti-
mization;

I. INTRODUCTION

The engineering structures are very often undergo
periodic or repeated cyclic loading which cause unexpected
fatigue failure even if there is a small crack. Hence, it
is mandatory that such structures must undergo structural
health monitoring process periodically in which the
magnitude and location of the crack can be identified and
the remaining life of the structure can also be predicted.
Generally, the crack detection process such as ultrasonic
methods, optical methods, radiography, magnetic field
methods, eddy-current methods and thermal field methods
are used for damage detection. They are highly expensive

and require that the vicinity of the damage is known a priori.
Further, the structural element to be inspected is accessible.
Hence, the vibration based crack detection methods deserve
further investigation. Crack in a structural element increases
the local flexibility which is the function of crack depth
and its location. Gounaris and Dimarogonas[1] developed a
compliance matrix for cracked beam element by assuming
the crack increases the flexibility due to strain energy
concentrations in the vicinity of the crack tip under load.
Ibrahim[2] formulated new stiffness matrix using TM
theory for beam element with elasto-plastic crack where
the crack was modelled as massless torsional spring with
flexibility equal to additional flexibility due to the crack
presence in the element. Krawczuk et al.[3] developed new
finite element matrices for cracked beam elements using
elasto-plastic fracture mechanics. Finite element procedure
was applied with suitable boundary conditions at the crack.
Viola et al.[4] developed a new prismatic Timoshenko beam
element with crack and the effect of crack in stiffness and
mass matrices were investigated. Khiem and Lien [5] used
TM for determination of natural frequency of beam with
multiple open edge cracks.

Krawczuk [6] detected the crack in beam like structures
using wave propagation method using Genetic Algorithm
(GA) and gradient search technique. Tee et al.[7] identified
crack on 50 degree of freedom(DOF) shear model
using Observer Kalman filter Identification and Eigen
Realisation Algorithm (OKID/ERA) based Condensed
Model Identification and Recovery technique with global
and sub-structural approach using GA. Prashanth and
Shankar [8] detected damage on structures using a two
stage artificial neural network technique. Damage on a
six story shear building, a nine member frame structure
and thirty member frame were identified. Varghese and
Shankar [9] identified cracks in sub-structure of cantilever
using multi-objective optimization approach with combined
acceleration matching and transient power flow balance
matching. Most of the above algorithms need mathematical
model of the complete structure and need to solve the
second order differential equations by using suitable

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013

140



x

y

le
l1

a

b

h

P1

P2

Fig. 1. Cracked beam element

numerical technique. The size of the system matrices is
in the order of n × n, where n is the total number of
degrees of freedom (DOF) of the structure. The size of
the matrices depends on the number of DOF. Even for a
modern computer, the computational speed for solving large
matrices is challenging. In the above algorithms, for each
iteration, the large system matrices need to be solved which
consumes more computational time. As an alternative, TM
based method is introduced in this paper. The size of the
TM does not increase with respect to the total number
of DOF of the model, thus reducing the computational effort.

To the best of Author’s knowledge, Nandakumar and
Shankar[10] identified structural parameters of a ten DOF
lumped mass system and a cantilever using lumped mass
transfer matrices first time in the literature. They developed
an improved consistent mass TM which was used for param-
eter identification of beam like structures, and proved that
it is superior to lumped mass TM. Later Nandakumar and
Shankar[11] developed TM including damping parameters
and extended the identification into damping parameters of
the structures. In general, damage detection methods have
a limitation in that there is only one crack in an element.
In this paper, a TM for a bending cracked beam element
has been developed for more than one cracks present in an
element.

II. CRACKED BEAM ELEMENT

The cracked beam element shown in the Fig.1 is mod-
elled as a torsional spring of flexibility c which connects the
two intact portions of the beam element as shown in Fig.2
and provides additional flexibility to the beam element. Let
le is the length of the element, l1 is the location of the crack
from its left end node and a is the crack depth from the top
of the crack section. The cross sectional dimensions of the
beam is b× h. The normalised crack depth(ξ) and location
(λ) are defined as ξ = a/h and λ = l1/le respectively. P1

and P2 are the shear force and moment applied at the right
node on the cracked element. The flexibility due to the
crack in the beam element can be obtained by Castigliano’s
theorem:

cij =
1− ν2

E

∂2

∂Pj∂Pi

∫
A

(
2∑
k=1

KI,k

)2

dA (1)

The stress intensity factor at any crack depth α is given
by KI = σ

√
παf(α/h), where σ is bending stress at the

c

le
l1
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Fig. 2. Equivalent model of cracked beam element
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Fig. 3. Cracked beam element

cracked section, E is Young’s modulus of the beam material,
I is area moment of inertia of the section and f(α/h)
is geometric correction function. The geometric correction
function is given by [3]

f(α/h) =

√
tan(πα/2h)

πα/2h

0.923 + 0.199[1− sin(πα/2h)]4

cos(πα/2h)
(2)

c =
6πh(1− ν2)((1− λ)le)

2

EI

ξ∫
0

ᾱf(ᾱ)2dᾱ (3)

A. Lumped Crack Transfer Matrix Formulation

The LCTM for the cracked beam element is the multi-
plication of three transfer matrices corresponds to the above
said portions. Let [TL] and [TR] be the TM for the left and
right intact portions of the beam element respectively. [Tc]
be the TM for the lumped crack portion in the beam element.
The transfer matrices [TL] and [TR] for the intact portion of
beam element, obtained from consistent mass TM [10]. The
crack is assumed as an element which does not have any
length and mass but provides an additional flexibility c to
the cracked beam element. The TM for the torsional spring
is formulated from the static equilibrium equations of the
spring as given in [12].

[Tc] =

1 0 0 0
0 1 −c 0
0 0 1 0
0 0 0 1

 (4)

The overall LCTM [T2,1] for the cracked beam element
which converts the state vector at the node 2 to state vector
at the node 1 can be obtained.

[T2,1] = [TL][Tc][TR] (5)

In general, for a beam element with n number of cracks as
shown in Fig.4, the overall LCTM for the element is

[T2,1] = [T1][Tc1][T2][Tc2][T3] . . . [Tn][Tcn][Tn+1] (6)
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Fig. 4. Beam element with multiple cracks

where [T1], [T2], . . . [Tn+1] are TMs for intact portions and
[Tc1], [Tc2], . . . [Tcn] are TMs for cracks. The TM for mul-
tiple elements is calculated from elemental TMs. The state
vector is estimated across n elements and state vector at
node 1 {X1} is known, then the internal response vector at
the (n+ 1)th node {Xn+1,i} is given by

{Xn+1,i} =

(
n∏
k=1

[T(n+1−k),(n+2−k)]

)
{X1,i}+

n∑
j=1

(
n+1−j∏
k=1

[T(n+1−k),(n+2−k)]

)
{Xj,e} (7)

where {Xj,e} is external force vector at jth node.

III. CRACK DETECTION BY LUMPED CRACK
TRANSFER MATRIX METHOD

Cracks in a structure are identified using the newly
developed LCTM for cracked beam element by assuming
the mass and flexural rigidity of the beam are known
and the crack present in the structure is open crack. The
unknown parameters are normalized cracks depth (ξ) and
their locations (λ) in the beams. The structure is excited
by a known harmonic force at a node. The acceleration
responses are measured at few nodes on the structure and
shear force and bending moment responses are measured
at the node where initial state vector is formed. The
measured accelerations are converted into displacement by
numerical integration. Since the crack parameters in the
LCTM are unknown, they are searched by Particle Swarm
Optimization (PSO) algorithm within the feasible range of
zero and one. It is assumed that all the elements have two
open edge cracks. The zero value of identified normalised
crack depth shows the undamaged state of an element. The
crack parameters are identified by successive identification
strategy [10] of LCTM algorithm.

A. Successive crack detection

In this strategy, the parameters of element(s) are iden-
tified between the nodes where the initial state vector is
formed and the nearest node where displacement mea-
surements are taken. The mean square error between the
predicted displacement responses for searched values of
crack parameters and measured displacement responses at
that location is minimized. The crack parameters for which
the mean squared error between measured and predicted
responses is minimum are the identified parameters of crack.

The error function is given by

ε =

∑L
j=1 |vm(j)− ve(j)|2

L
(8)

where vm(j) and ve(j) are measured and predicted dis-
placement responses respectively at jth time step. L is the
total number of time steps. This procedure is repeated until
parameters of all the elements are identified. Parameters
are identified from both complete and incomplete measure-
ments. Complete measurement means that the translational
acceleration response is measured at all nodes and angular
acceleration is measured only at the initial node. The com-
plete measurement is not always practical for large structures
due to the requirement of large number of sensors. Hence,
parameters are identified by measuring responses at selected
nodes only, which is known as incomplete measurement.

IV. NUMERICAL EXAMPLES

The crack detection algorithm based on LCTM is applied
on a cantilever with cracks at different locations and a sub-
structure of a nine member frame structure. It is assumed that
the mass and flexural rigidity of each element are known
priori, each element assumed to have two cracks, absence
of a crack gives zero for crack depth and its location. All
measured responses are numerically simulated by MATLAB
using Newmark’s constant acceleration scheme for a length
of 3 s with time step of 0.001 s. In order to simulate
experimental error, the I/O responses are polluted with a
zero mean Gaussian white noise of 5% of the RMS value
of unpolluted responses.

A. Example-1: Cantilever with multiple cracks

A uniform slender cantilever of cross section 50×5 mm
and length of 520 mm which was used by Viola et al.[13]
is considered here with four cracks. The Young’s modulus
of the beam material (E) is 206 GPa and its density is
7850 kg/m3. The cracks of depth 0.5 mm, 1.5 mm, 0.4 mm
and 2.5 mm are located at 120 mm, 150 mm, 380 mm and
395.2 mm respectively from the fixed end of the cantilever.
The normalized crack depths are ξc1 = 0.1, ξc2 = 0.3,
ξc3 = 0.08 and ξc4 = 0.5 and the normalised crack locations
in global structure are λc1 = 0.23, λc2 = 0.288, λc3 = 0.73
and λc4 = 0.76 respectively. The first natural frequency of
the cracked beam is 15.07 Hz. The cantilever is divided
into six elements. Two cracks are located in element 2 and
two cracks are located in element 5 as shown in Fig.5. The
normalized crack locations in the element 2 with respect to
left end of the element are λe21=0.384 and λe22=0.73 and
the same in the element 5 are λe51=0.384 and λe52=0.56.
(e21 represents crack 1 in element 2 - C1). The free end
of the cantilever is applied with an harmonic excitation
of F (t) = 10sin(2π10t) N. Acceleration responses are
measured at all nodes and angular acceleration response is
measured at free end node only. The initial state {X7} =
{v7(t), θ7(t),M7(t), V7(t)}T is formed at the free end since
the bending moment and shear force is zero. The parameters
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Fig. 5. FE model of cantilever with multiple cracks

TABLE I. NORMALIZED GLOBAL CRACK LOCATION IN THE
CANTILEVER

Crack Exact Identified crack location (λ)
Number Location Complete measurement Incomplete measurement

Noise free 5% Noise Noise free 5% Noise

C1 0.231 0.2303 0.2289 0.229 0.2252
C2 0.288 0.2885 0.29 0.2893 0.2807
C3 0.731 0.7322 0.7248 0.7288 0.7369
C4 0.76 0.7587 0.7624 0.7544 0.7516

are searched by PSO with 50 swarm size and 30 iterations
in each identification cycle. The identified crack depths in
each element with complete set of measurement are shown
in Fig.6(a) and 6(b). The absolute percentage of error in
identified crack depth with complete set of measurement in
the element 2 are 0.3% and 0.06% and in the element 5
are 0.32% and 0.086%. The corresponding percentage of
error in crack location from the left end of the cantilever
in the element 2 are 0.19% and 0.08% and in the element
5 are 0.2% and 0.18%. The absolute percentage of error in
identified crack depth with complete set of measurements
with 5% noise are 5.46% and 0.53% in element 2 and
11.31% and 0.12% in element 5. The corresponding error
in the identified locations measured from the left end of the
cantilever are 0.78% and 0.53% in element 2 and 0.82%
and 0.32% in element 5. The identified normalized crack
locations from the left end of the cantilever is tabulated in
the Table.I. The total time taken for convergence is 11 s.
The problem is next solved using the displacement responses
measured at nodes 2, 4, 6 and 7 only. The PSO parameters
are 50 swarm size and 100 iterations in each identification
cycle (total 400). The total time taken for the convergence
is 15s. The identified crack depth in each element with
incomplete set of measurement are shown in Fig. 6(c) and
6(d). The percentage of absolute error in identified crack
depth are 2.46% and 1.57% in element 2 and 3.15% and
1.01% without noise. The same in identified crack locations
from the left end of the cantilever are 0.78% and 0.28% in
element 2 and 0.27% and 0.74% in element 5. In case of
measurements with 5% noise level, the percentage of error in
crack depth are 8.46% and 4.02% in element 2 and 11.31%
and 2.04% in element 5. The same in crack locations are
2.43% and 2.71% in element 2 and 0.84% and 1.1% in
element 5. The percentage of error is comparatively high
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(a) Crack depth(No Noise, complete)
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(b) Crack depth(5% Noise, complete)
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(c) Crack depth(No Noise, Incomplete)
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(d) Crack depth(5% Noise, Incomplete)

Fig. 6. Identified crack depth of cantilever
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at cracks with small magnitudes since they show very small
amount change in the dynamic responses.

1) Comparison with other damage detection methods:
Viola et al.[13] identified crack parameters in the same
cantilever with single crack of depth 2.5 mm and at a
distance 395.2 mm from its fixed end, using a frequency
domain method from experimentally obtained measurements
of unspecified noise content. The percentage of error in
identification was 2.5% in crack depth and 0.53% in crack
location in global structure. The same problem was also
solved by Cibu Varghese and Shankar [14] using combined
acceleration and power flow matching method. They identi-
fied the crack parameters with the percentage of error of
0.92% in crack depth and 0.5% in location respectively
without noise and 1.72% and 2.8% respectively with 5%
Noise. The LCTM identified the crack (C4) of the same
magnitude and same location along with other three cracks.
The crack parameters of crack C4 is identified with an
error of 0.08% in depth and 0.17% in global location with
uncontaminated responses and 0.12% in depth and 0.32% in
global crack location with 5% noise contaminated responses.
The method proposed by Viola et al. has a constraint that
there should be only one crack in the cantilever. Similarly
the combined acceleration and power flow matching method
has a limitation that there should be only one crack in each
element. This LCTM method has an advantage that it can
able to identify multiple cracks in single element.

B. Example-2:Sub-Structure of Frame Structure

A frame structure with nine slender beam members is
supported as shown in Fig.7(a) used in [11]. The cross
section of each member is 12 × 6 mm. The density of the
frame material is 7800 kg/m3 and its Young’s modulus (E)
is 200 GPa. The flexural rigidity of the each member is 43.2
N.m2. The first natural frequency of the structure is 11.87
Hz. Four open edge cracks of depth 0.3 mm, 1.5 mm, 3 mm
and 2 mm are considered at a distance of 362.5 mm, 387.5
mm, 600 mm and 650 mm respectively from the left end of
the member 4 as shown in Fig.7(b). The normalized crack
depth for the above cracks are ξc1=0.05, ξc2=0.5, ξc3=0.25
and ξc4=0.33 and their normalized locations from the left
end of the member 4 are λc1=0.3625, λc2=0.3875, λc3=0.6
and λc4=0.65. It is proposed to detect the cracks locally in
the sub-structure (member 4) of frame which is shown in
side the dotted box in Fig.7(a). The sub-structure considered
is the middle portion of member 4 which has a length of
875 mm and is divided into seven finite elements. First two
cracks lie on the element 3 and the remaining two cracks
lie on the element 5. The normalized locations of them
from the left end of the respective elements are λe3.1=0.3,
λe3.2=0.4, λe5.1=0.6 and λe5.2=0.7 (λe3.1 means that crack
1 is in the element 3). The damping effect in the structure
is assumed as Rayleigh’s damping with damping ratio of 1%.

The structure is excited by a harmonic force of
10sin(2π×10t) N at the midpoint of the member 6 which is

1 6 8

4

32 5 7 9

F (t)
1m 1m 1m

1m

(a) Global Structure

1 2 3 4
C1,C2 C3,C4

5 6 7 8

(b) Sub-structure-Member 4

Fig. 7. Frame Structure

Bending Strain gauge

Shear Strain gauge

Fig. 8. Strain gauge arrangements at starting node

outside of the sub-structure considered. Hence the measure-
ment of input force is not required for identification. The
initial state vector {X8} = {v8(t), θ8(t),M8(t), V8(t)}T is
formed at node 8 by measuring bending moment and shear
force using strain measurements. Translational acceleration
is measured at all nodes while angular acceleration, bending
moment and shear force responses are measured at starting
node 8 only. The bending moment and shear force responses
are measured by measuring corresponding strains at the node
8 using strain gauges. It is assumed that EI of starting node
is known. They are calculated from measured strains using
the relations [11].

M(t) =
2EIεB(t)

h
(9)

V (t) =
4EIεS(t)

h2(1 + ν)
(10)

where M(t) and V (t) are bending moment and shear force
respectively, εB(t) and εS(t) are strain due to bending and
shear respectively, ν is Poisson’s ratio. Dynamic strain εB(t)
at the starting node is measured at the top and bottom of the
node 8, and the mean value is considered for calculation of
bending moment. The algorithm works as explained in the
previous example. The PSO searches the parameters within
the feasible range of zero and one with swarm size of 50
and 50 iterations in each cycle. The element wise identified
crack parameters with complete set of measurement are
shown in Fig.9. The percentage of absolute error in identified
crack depth are 1.45%, 0.07%, 0.72% and 1.1% in the
order of cracks shown in Fig.7(b) without noise. The same
are 8.8%, 0.76%, 1.978% and 1.83% with 5% noise level.
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(a) Crack depth(No Noise, Complete)
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(b) Crack depth(5% Noise, Complete)
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(c) Crack depth(No Noise, Incomplete)
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(d) Crack depth(5% Noise, Incomplete)
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(e) Crack location(No Noise, Complete)
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(f) Crack location(5% Noise, Complete)
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(g) Crack location(No Noise, Incom-
plete)
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(h) Crack location(5% Noise, Incom-
plete)

Fig. 9. Identified crack parameters of SS of frame structure
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Fig. 10. FE model of cantilever experiment

The error in identified global location of the cracks are
0.62%, 0.23%, 0.23% and 0.13% in the same order without
noise and 0.91%, 0.84%, 1.26% and 0.45% with 5% noisy
measurement. The mean computational time is 8s. The
problem is repeated with only four set of measurements at
nodes 1, 3, 5 and 8. Since the number of unknowns are more
in one cycle, number of iterations are increased to 200 for
the same 50 number of swarm size in PSO. The identified
element wise results are shown in Fig.9. The percentage of
absolute error in identified crack depth are 11.9%, 2.46%,
6.75% and 3.42% in the order of cracks shown in Fig.7(b)
without noise. The same are 17%, 2.8%, 8.9% and 6.39%
with 5% noise level. The error in identified global location of
the cracks are 0.71%, 0.63%, 0.69% and 0.3% in the same
order without noise and 1.19%, 1.3%, 1.48% and 1.58%
with 5% noisy measurement. The mean computational time
is 18s. In this example also, it can be seen that the crack
with small magnitude is identified with more error. However,
the LCTM method is suitable to locate the multiple cracks
in an element.

V. EXPERIMENTAL VALIDATION-CANTILEVER

A cantilever made up of acrylic material of length 420
mm and cross section of 12×12 mm is taken and it was
divided into six finite elements of each of length 70 mm
as shown in Fig.10. The Young’s modulus of the cantilever
material was estimated to be 3.9 GPa from a simple bending
test and the density was measured to be 1190 kg/m3. The
area moment of inertia for the cross section is I = 1.728×10-9

m4. The flexural rigidity (EI) of each element is calculated
as 6.739 N.m2. The experimental setup is shown in Fig.11(a).
Cracks were introduced in the fourth and fifth elements as
shown in Fig.11(b). The crack depths of the cracks C1,
C2 and C3 are 3 mm, 1.5 mm and 6 mm respectively.
The normalized crack locations of the above cracks from
the fixed end of the cantilever are λc1=0.583, λc2=0.71 and
λc3=0.75 respectively and the normalized crack depths are
ξc1=0.25, ξc2=0.125 and ξc3= 0.5 respectively. The crack
C1 lies in the element 4 and other two cracks lie in the
element 5. The element wise crack locations are λe4.1 =0.5,
λe5.1=0.26 and λe5.2=0.5. The natural frequencies for the
first mode of the structure was calculated using above values
of mass and stiffness parameters as 19.89 Hz. There were
seven DYTRAN miniature accelerometers of 2 gm mass with
sensitivity of 107 mV/g and acceleration range of 50g. Each

(a) Cantilever

(b) Cracks in the cantilever

Fig. 11. Experimental set-up of cantilever

node was fixed with one accelerometer to measure transverse
acceleration and the free end node was fixed with two ac-
celerometers very close to each other as shown in Fig.11(a)
to measure angular acceleration. The center distance between
two accelerometers fixed at the free end was dx=7 mm. The
cantilever was excited at the free end with an harmonic input
force of F = 1.5sin(2π80t) N by a LDS permanent magnet
20 N modal shaker with a maximum displacement of 5 mm,
with an operating frequency range of 5 Hz - 13 kHz. The
input force was measured by a KISTLER force transducer
with sensitivity of 90.4 mV/lbf and range of 50 lbf. The
acceleration responses measured at all six nodes and input
force response were acquired with a sampling frequency
of 1000 Hz using DEWE 43 8 channel data acquisition
card. From the acquired data, a portion of data length 3 s
was considered for damage identification. The translational
acceleration at the free end (Node 6) is the mean of v̈7(t) and
v̈6(t). All the measured accelerations are converted into dis-
placement responses. The initial state vector is formed at the
free end as {X6} = {v6(t), θ6(t), 0, 0}T + {0, 0, 0, F (t)}T .
The normalized crack depth (ξ) and location (λe) are the
unknowns to be identified in each element. The parameters
were searched between the feasible search range of zero and
one by PSO. The swarm size is 50, number of iterations
for each cycle is 100. The identified element wise crack
parameters are shown in Fig.12. The percentage of absolute
error in identified normalized crack depth in the order of
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(a) Identified crack depth

Crack 1
Crack 2

1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1

Elements

N
or

m
al

iz
ed

 c
ra

ck
 lo

ca
tio

n

(b) Identified crack location

Fig. 12. Experimentally identified crack parameters of cantilever

TABLE II. NORMALIZED GLOBAL CRACK LOCATION(λ) IN THE
CANTILEVER

Crack Exact Identified % of error
Number Location location

C1 0.583 0.58 -0.62
C2 0.71 0.712 0.31
C3 0.75 0.746 -0.46

cracks shown in Fig. 10 are 12.24%, 25.9% and 3.52%
respectively. The absolute percentage of error in identified
element wise crack location for the above cracks are 4.32%,
5.07% and 4.14% respectively. The mean CPU time required
for convergence was 10s. The global crack location and per-
centage of error in identified global crack position measured
from the left end of the cantilever are shown in Table. II.
The crack with small magnitude (C2) is identified with more
error. Hence the LCTM method is validated experimentally.

VI. CONCLUSION

A new LCTM based damage detection algorithm for
beam like structure is presented in this paper. The LCTM
for the cracked beam element is formed from TMs for intact
beam elements and lumped crack elements. The initial state
vector is obtained at one node on the structure by measuring
displacement, bending moment and shear force responses.
A different strategy is used for nine member structure for
obtaining the initial state vector from strain measurements.

Normalized crack depth and its location are the parameters
to be identified. Two cracks with close span are assumed in
each element. The successive identification strategy adopted
here is fast and accurate. Two numerical examples were
studied with complete and incomplete set of measurements.
They are cantilever with multiple cracks and a nine member
structure with multiple cracks. the typical error in identified
crack parameters ranging from 0.07%(without noise) to
17%(with 5% noise). Further the LCTM method is validated
experimentally by identifying cracks of varying depth and
location in a cantilever. This algorithm is capable of identify-
ing multiple cracks in an element with accuracy comparable
to existing literature. Further, this algorithm is suitable for
local damage identification in a large structure.

REFERENCES

[1] G. Gounaris and A. Dimarogonas, “A finite element of a cracked
prismatic beam for structural analysis.” Computers & Structures,
vol. 28, no. 3, pp. 309–313, 1988.

[2] F. K. Ibrahim, “An elastoplastic cracked-beam finite element for
structural analysis.” Computers & Structures, vol. 49, no. 6, pp. 981
– 988, 1993.

[3] M. Krawczuk, A. Zak, and W. Ostachowicz, “Elastic beam finite
element with a transverse elasto-plastic crack.” Finite Elements in
Analysis and Design, vol. 34, no. 1, pp. 61 – 73, 2000.

[4] E. Viola, L. Nobile, and L. Federici, “Formulation of cracked beam
element for structural analysis.” Journal of Engineering Mechanics,
vol. 128, no. 2, pp. 220–230, 2002.

[5] N. T. Khiem and T. V. Lien, “A simplified mehtod for natural
frequaency analysis of a multiple cracked beam.” Journal of Sound
and Vibration, vol. 245, no. 4, pp. 737 – 751, 2001.

[6] M. Krawczuk, “Application of spectral beam finite element with a
crack and iterative search technique for damage detection.” Finite
Elements in Analysis and Design, vol. 38, no. 6, pp. 537 – 548,
2002.

[7] K. F. Tee, C. G. Koh, and S. T. Quek, “Numerical and experimental
studies of a substructural identification strategy.” Structural Health
Monitoring, vol. 8, no. 5, pp. 397–410, 2009.

[8] P. Prashanth and K. Shankar, “A hybrid neural network strategy for
identification of structural parameters,” Structure and Infrastructure
Engineering: Maintenance, Management, Life-Cycle Design and
Performance, vol. 6, no. 3, pp. 379–391, 2010.

[9] C. K. Varghese and K. Shankar, “Damage identification using
combined transient power flow balance and acceleration matching
technique,” Structural Control and Health Monitoring, p. [available
on line], 2013.

[10] P. Nandakumar and K. Shankar, “Estimation of structural parameters
using transfer matrices and state vectors.” International Journal
Applied Science and Engineering, vol. 10, no. 3, pp. 181–207, 2012.

[11] ——, “Structural parameter identification using damped transfer
matrix and state vector.” International Journal of Structural Stability
and Dynamics, vol. 13, no. 4, pp. 1 250 076–1 –27, 2013.

[12] R. F. Steidel, An Introduction to Mechanical Vibrations, 2nd ed.
John Wiley and Sons., 1978.

[13] E. Viola, L. Federici, and L. Nobile, “Detection of crack location
using cracked beam element method for structural analysis.” Theo-
retical and Applied Fracture Mechanics, vol. 36, no. 1, pp. 23 – 35,
2001.

[14] C. K. Varghese and K. Shankar, “Crack identification using combined
power flow and acceleration matching technique.” Inverse Problems
in Science and Engineering, vol. 20, no. 8, pp. 1239–1257, 2012.

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013

147


	Introduction
	Cracked beam element
	Lumped Crack Transfer Matrix Formulation

	Crack Detection by Lumped Crack Transfer Matrix Method
	Successive crack detection

	Numerical examples
	Example-1: Cantilever with multiple cracks
	Comparison with other damage detection methods

	Example-2:Sub-Structure of Frame Structure

	Experimental Validation-Cantilever
	Conclusion
	References



