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Abstract—Aim of this study is to estimate various 
strain life fatigue parameters using tension test data. 
Monotonic tensile test properties, hardness and modulus of 
elasticity of various steel grades are extrapolated to predict 
various parameters of strain based fatigue approach. 
Artificial Neural Network (ANN) tool is used for prediction 
purpose. A neural network program is developed in MAT-
LAB-2012 software. Four separate networks are developed 
to estimate four strain-life fatigue properties. These are 
stress at fracture in one stress cycle, true strain 
corresponding to fracture in one stress cycle, fatigue strength 
and ductility exponents. Tensile test results data, material 
hardness and modulus of elasticity is used as input for 
networks. The experimental fatigue test data available in 
literature for different grades of steel is used for training and 
test purpose. The results of neural network modeling 
indicated the close agreement with the real time values. The 
accuracy of predicted result is found to be approximately 87-
98%. Finally, it is concluded that ANN is prominent tool to 
predict various properties of strain based fatigue approach 
which eliminates the need of actual experimentation. 
Keywords—Strain controlled fatigue properties; ANN; MAT-
LAB; Fatigue; Tensile test. 

I. INTRODUCTION 

Normally, machine components are designed on 
the basis of mechanical properties obtained from 
monotonic tensile test. However, in service most of the 
components are subjected to cyclic loading. Hence it is 
important for design engineer to know fatigue properties 
of materials [1,2]. Often situation arises where knowledge 
about resistance to cyclic loading for specific material is 
required, but data is not available. On the other hand, 
tensile test properties, hardness, modulus of elasticity etc. 
are readily available for almost all materials [3-8]. This 
can be extrapolated to forecast various properties material 
under cyclic loading. The common practice to obtain the 
real time experimental values is challenged using ANN as 
prediction tool. 

Analytical co-relations between tension test 
properties and strain-life fatigue parameters have been 
developed by many researchers [8, 9]. All these are based 
on certain assumptions, and some practical limitations 
associated with these. So, it is suggested to develop a 
robust approach which can provide solutions for fatigue 
problems on the basis of tension test data.  

A. Strain Based Fatigue Life  

Literature survey reveals that, strain based approach 
for fatigue life assessment is more powerful and 
accurate than traditional stress life approach [8]. Stress 
life approach to determine fatigue life is based on 
cyclic stress, referred as S-N approach. The relation 
between number of reversals to failure and stress 
amplitude is given by Basquin’s equation [2] 
represented as equation (1). 

 
∆�

�
	= ����2���� (1) 

Where, ∆�/2 is stress amplitude and 2Nf is the 
number of reversals to failure. To determine life under 
cyclic loading input values required in eq.1 are fatigue 
strength coefficient,��� and fatigue strength exponent, b. 

Strain based fatigue life approach is based on 
local strain, also known as strain life (ε-N) method. This 
relates reversals to failure, 2Nf, to the strain amplitude, 
∆ε/2. The total strain is calculated as sum of elastic and 
plastic strain [2]. The relationship is referred as Coffin-
Manson’s equation, represented as Equation (2), (3). 
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Where, ∆ℰ/2, ∆ℰ
/2, ∆ℰ�/2 are total, elastic and plastic 
strain amplitudes, respectively, ��� is fatigue strength 
coefficient,�	is fatigue strength exponent,		��  is fatigue 
ductility (strain) coefficient , is fatigue ductility (strain) 
exponent and 2�� is number of reversals for failure.  ���, �, 		�� , 	are influencing constants for strain-life 
behavior of material [1]. 

It is general practice to access resistance offered 
by material under cyclic loading using strain-life 
approach. This gives comprehensive description of fatigue 
behavior of material. This approach is more popular for 
design of automotive components [8].  
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B. Artificial Neural Network 

The term “neural network” refers to a collection 
of neurons, their connections and strengths between them. 
The knowledge acquired during the training process is 
used to adjust weights and bias [10]. This is done so as to 
obtain linear co-relation between output response of 
network and known target values to maximum extent 
possible.  Multi-layered feed forward neural network with 
back propagation is generally used [11]. Back propagation 
algorithm uses error minimization technique. Various 
non-linear activation functions such as sigmoidal, tanh or 
radial (Gaussian) are used to model the neuron activity 
[10-12].   

The typical artificial neuron is given in fig.1. The 
scalar input Xi is transmitted through connections that 
multiply their strength by scalar weight wi to form scalar 
product Wi X i. All weighted inputs are then added to get ∑����� , to this scalar bias ‘bi’ is added. The result is 
argument of transfer function �, which produces output 
‘a’ (4). Note that wi and bi are adjustable scalar parameter 
of neuron. These can be adjusted in order to achieve 
desired performance of the network [10]. 
 

X1w1 

X2W2 

X iWia    

 

XnWn bi  

       1  

Fig.1.Schematic representation artificial neuron with one input and bias. 

��		�
� ������� � ��
���

�																									�4�		 

II.   DEVELOPMENT OF NEURAL NETWORK 

The main objective of this study is to develop 
and demonstrate the applicability of neural network to 
estimate various parameters of strain based fatigue 
approach on the basis of tension test data. Neural network 
is used as prediction tool. Experimental tensile and fatigue 
test data of 73 different steel grades as given in Table.Iis 
used for network training and validation [8,9]. 
Neuralnetwork program is developed and written in 
MAT-LAB 2012 software. The program will estimate the 
known targets for known inputs and can generalize to 
accurately estimate the unknown targets for inputs that are 
not used to design the solution.The literature survey 
reveals that the model with more input and one output 
variables significantly improves the result accuracy [16]. 
Hencefour separate networks are examined to predict four 
strain-life fatigue properties: fatigue strength coefficient, 

σ’ f, fatigue ductility coefficient, b, fatigue strength 
exponent, ε’ f, and fatigue ductility exponent, c.Neural 
network approach comprises of three main stages: 
preparation of input-target data, design of network 
architecture, programming and training of ANN. 

A. Preparation of Input-Target Dat:  

Input output parameters are important and these 
are selected on the basis of physical processes to be 
investigated [10]. This step is performed outside the frame 
of neural network [11]. For this study monotonic tensile 
and fatigue test dataas given in Table-Iis used for input 
and target matrix. Each column of input matrixhas five 
elements representing five tensile test properties (E, RA%, 
BHN,σy,σu) whose fatigue properties are already known. 
Similarly, data of 73 steel grades is used hence size of 
input matrix is 5x73. 

Four target matrices are prepared to predict four 
strain life fatigue properties. Each corresponding column 
of target matrix has one element; representing one of the 
four strain-life fatigue properties.Hence size of target 
matrix is 1x73 which represents 73 known target values.   

B. Design of Network Architecture 

  While designing ANN, selection of network 
architecture according to problem definition is important. 
For prediction problem input-output function fitting with 
feed forward neural network structure is the best [11-15]. 
The network structure is decided manually by trial and 
error.Structure of ANN architecture and its configuration 
designed for this study is given in fig.2. 

 
Fig.2.Structure ANN architecture used. 

Three layered feed forward network with input 
layer, one hidden layer and output layer is used for this 
study. It is suggested that network with more input 
parameters and one output produces better results. Hence 
for this study network with five parameters at input layer 
and one output is designed as shown in fig.2. 

‘Xi’ is receiving signal of node ‘i’ of input layer, ‘Wij ’ 
is the connection weight associated with node i of input 
layer and node j of hidden layer and ‘bi’ is bias. Equation 
(5), gives net input Zj to the hidden layer. 

∑ � 
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Activation level of neuron in each layer depends on 
transfer function associated with it. [11].Generally, 
sigmoid, hyperbolic tangent or linear transfer functions 
are used.Equation (6), represents the hidden layer output 
(h) from neuron. 

ℎ��		�
� ����� .�� + ��
���

�											(6) 
Equation (7), gives net input Zk to node k of the output 
layer. 

�� = ����� . ℎ� + ��
���

�																		(7) 
Each output unit applies activation function to 

compute its output signal; the output Ok of node k of the 
output layer is given (8). 

���	
	�
� ����� . ℎ� + ��

���

� (8) 

Where, Wjk is the weight from hidden unit hj to output 
unit Ok. 

C. Programming 

Neural network program to solve input-output 
function fitting problem with three layered feed forward 
network is developed. Flow chart for program 
development is given in Fig 3.  
 

 

 

 

  

  

 

 

 

 

 

 

 

Fig.3: Flow chart showing programming steps. 

For predicting four strain life fatigue properties, four 
separate network programs are developed. Each network 
program has same input and different targets. 
Programming syntax and various function selected for one 
of the network, which estimates fatigue strength 
coefficient is discussed below. 
 
Step1: Input and targets matrix variable are assigned to 
the network. These matrices are created initially out of the 
frame of neural network. The script assumes that the input 
and target vectors are already loaded into the workspace.  
inputs = I; 
targets = fat_st_coe;  
I- is Input matrix variable and fat_st_coe- is target matrix 
variable. 
 
Step2:Three layered fitting network with input, output and 
one hidden layer is created transfer function .tan-sigmoid 
is used in the hidden layer and linear transfer function in 
the output layer.  Considering training and test 
performance with various numbers of neurons in hidden 
layer, it is decided to keep ten neurons in hidden layer to 
achieve the optimum output. The network has one output 
neuron, because there is only one target valueassociated 
with each input vector.Mathematically,tan sigmoid 
activation function used for hidden layer is defined as (9) 																													������ = �

		�����
    (9) 

 
Activation function used in output layer is 

purelin. Syntax for assigning input and output transfer 
functions ,hidden layer size is as given below. 
purelin(y)= y   
hiddenLayerSize = 10; 
net = fitnet(hiddenLayerSize); 
net.layers{1}.transferFcn = 'tansig'; 
net.layers{2}.transferFcn = 'purelin'; 
 
Step3:Normalization is done in order to reduce noise data 
of input and target vectors. This improves network 
processing time. The process functions, such as remove 
constant rows and map min-max are used, with this input/  
target data falls in range [-1,1]. This is done before 
training the network. 
net.inputs{1}.processFcns= 
{'removeconstantrows','mapminmax'}; 
net.outputs{2}.processFcns= 
{'removeconstantrows','mapminmax'}; 
removeconstantrows: Removes inputs/targets that are 
constant, mapminmax: Normalize inputs/targets to fall in 
the range [−1, 1].  
 
Step4:The accuracy of network depends on training 
dataset. Input and target database are split in to three 
subgroups, training, validation and test dataset. 70% of 
data is used for training, 15% for validation and remaining 
15% for test. Training set updates network weights and 
bias so as to obtain best fit between network response and 
known target values. Validation set is used to monitor 

Create a fitting Network 

Use the network 

Normalization of input-output 
variables 

Dividing the Data 

Choose and assign Training Function 
variables 

Train the network 

Post training analysis 

Assign input& target matrix 
variables 
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error during training process. Test set is used for 
comparing different models [10].   
Following divide functions are used 
net.divideFcn = 'dividerand';   %Divide data randomly 
net.divideMode = 'sample';   %Divide up every sample 
net.divideParam.trainRatio = 70/100; 
70% of data is used for training.  
net.divideParam.valRatio = 15/100; 
 15% of data is used for validation.  
net.divideParam.testRatio = 15/100;  
15% of data is used for test.  
 
Step5: Now training function is assigned to the network. 
Selection of training function is important in order to 
enhance the performance of network. This optimizes the 
error function, by adjusting network weights and bias. 
Weights and bias are adjusted to improve the performance 
function when it declines rapidly. Selection of training 
function is most important and difficult task. It 
usuallydepends on a various factors such as the network 
structure,training time, memory usage etc. The 
Levenberg-Marquardt optimization algorithm (trainlm) is 
selected for this study. It was independently developed by 
Kenneth Levenberg and Donald Marquardt,this provides a 
numerical solution to the problem of minimizing a 
nonlinear function. It is fast and has stable convergence. 
In the artificial neural-networks field, this algorithm is 
suitable for training small- and medium-sized problems. 
The Levenberg–Marquardt algorithm is a blend of  
steepest descent method and the Gauss–Newton 
algorithm. It inherits the speed advantage of the Gauss–
Newton algorithm and the stability of the steepest descent 
method [14]. 
net.trainFcn = 'trainlm'; %Levenberg-Marquardt 

Step6: Once the network weights and biases are 
initialized, the network is ready for training. This involves 
optimization of network performance. Mean square error 
is used as performance function for this network.  This is 
defined as average squared error between the network 
outputs ��  and the target outputs	 �. Mathematically it is 
represented as (10) 

!�
 = 	 1��
�� =

�

���

1"�( �
�

���

−��)
�							(10) 

net.performFcn = 'mse';  % Mean squared error 
Step7: After the training is completed, training record, (tr) 
is checked. This contains information related to network 
training. During training, tr structure generates 
information about several variables such as value of the 
performance function, the magnitude of the gradient, etc. 
The training record can be used to plot the performance 
progress by using the plotperfcommand. The next step in 
post training analysis is network validation. This does 
regression analysis, which gives relation between network 
response and known targets. When output and target 
values matches exactly, the training is said to be perfect 
[10,11]. This rarely happens in practice.  

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
'plotregression', 'plotfit'}; 
% Test the Network 
outputs = net(inputs); 
errors = gsubtract(targets,outputs); 
performance = perform(net,targets,outputs); 
% Recalculate Training, Validation and Test Performance 
trainTargets = targets .* tr.trainMask{1}; 
valTargets = targets  .* tr.valMask{1}; 
testTargets = targets  .* tr.testMask{1}; 
trainPerformance = perform(net,trainTargets,outputs) 
valPerformance = perform(net,valTargets,outputs) 
testPerformance = perform(net,testTargets,outputs) 
 
Step 8:After the network is trained, validated and better 
regression plot is obtained. The network is ready to be 
used for predicting outputs of which real time target 
values are not available.For example, to predict fatigue 
ductility coefficient of steel 1038, as given in 5th row of 
Table I. 
a = net(I(:,5)) 
a =1054 (Predicted value of Fatigue ductility 
coefficient,���) 
Actual value is 1043; hence predicted value is reasonably 
close to the actual. Similar prediction can be done for any 
inputs which are not used while designing the network. 

III.   RESULTS AND DISCUSSIONS 

The main objective of the present study is to 
develop and demonstrate a robust approach using neural 
network tool, which estimates strain based fatigue 
properties of material by using readily available tension 
test data. Four neural networks for predicting four strain-
life fatigue properties are developed. The neural network 
training is conducted by varying number of neurons in 
hidden layer in order to achieve optimum performance of 
each network. The performance of the networks was 
evaluated by calculating MSE errors. For fastest 
convergence Optimum learning rate and momentum 
coefficient values are determined in each network. The 
regression analysis is performed between network 
response and corresponding target values. This assesses 
the validity and accuracy of network. TableII, gives 
values network parameters, number of hidden nodes in 
testing for individual networks. 

The performance of the network is better when 
network response and corresponding targets are closer.  
The slopes of theelastic and plastic plots are assumed to 
be equal to 0.12 and -0.6, respectively [3]. This 
assumption gives satisfactory agreement between 
calculated and experimental fatigue values. 

Fig. 4 shows results of regression analysis. 
Horizontal axis represents known target values and 
vertical axis represents output response obtained from 
network. The quality of neural network dependents on 
prediction its accuracy for unseen target data. Looking at 
the network performance for each fatigue properties as 
given in Fig.4,the prediction accuracy is found to 
bereasonably good. To evaluate the network stability 
training tests are done five to six times by using randomly 
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selected training and test dataset. For every fatigue 
property, training and test regression graphs are obtained. 
Results of regression analysis for training data gives 95-
98% accuracy of network. Furthermore regression results 
of test data also indicated the better prediction, R=80 to 
85%. In addition unseen test data is also predicted with 
close accuracy. 

 

a. Fatigue strength coefficient,��
� 

 

b. Fatigue strength exponent, b 

 
c. Fatigue ductility coefficient,��

�  

   d. Fatigue ductility exponent, c 

TABLE II: Network details and testing results of neural networks 

Network 

Parameters 

Output Parameters 

    σ'f         ε’f            b                 c 

Hidden 
Neuron 
Number 

5 6 5 7 

Learning rate-
momentum 
coefficient 

0.75-

0.9 

0.8-0.9 0.85-0.9 0.7-

0.85 

IV.  CONCLUSIONS 

The study reveals that ANN can be used as robust 
approach for prediction of strain-life fatigue properties. 
Network design with multiple neurons at input layer and 
one neuron at output layer gives best prediction quality. 
Fatigue strength coefficient and fatigue ductility 
coefficients which primarily characterizes strain 
amplitude vs life reversal curve are predicted with high 
accuracy. Hence actual experimentation required to get 
fatigue properties can be eliminated completely. This will 
save the time and huge cost involved in experimentation.  
To establish the stable network it is require to perform 
some permutations and combinations of various 
associated parameters. Good sampling of data and proper 
selection of input parameters for training may improve the 
prediction performance and training time.It can be 
concluded that ANN approach should be used to get best 
prediction quality.  

V.  FURTHER SCOPE 

The scope of this study is limited to development and 
demonstration of ANN as prediction tool for strain life 
fatigue properties. Further, comparison between 
developed neural network prediction and prediction on the 
basis other analytical methods [8] can be carried out. On 
the basis of investigation results, comments can be made 
on robustness of ANN as prediction tool. 

In order to investigate the dependence of input 
parameters on result accuracy, networks with various 
permutations and combinations of input parameters can be 
developed for regression and MRE analysis. 

Since,output results of network for various strain 
based fatigue properties are closer to known target data, 
fatigue life is not calculated. Because it is obvious that 
fatigue life if calculated by using network results will 
show satisfactory results when compared with real time 
data.

Fig.4: Predicted Fatigue Properties from neural network Vs  
experimental target data for training and test. 

 

 

160



 
Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013 

 
 

 
TABLE I: Monotonic Fatigue and tension test properties of Steels used in this study. [8],[9] 

Steel E(Gpa) RA [%] BHN Sy Su S'f b E'f c 
1141 217 54 241 602 802 1080 -0.079 0.361 -0.508 
1141 214 49 217 450 725 1255 -0.102 0.43 -0.529 
1141 215 58 252 610 797 1162 -0.086 0.534 -0.555 
1141 220 47 229 493 789 1326 -0.103 0.602 -0.58 
1038 201 54 163 331 582 1043 -0.107 0.309 -0.48 
1038 219 53 185 359 652 1004 -0.098 0.202 -0.44 
1038 219 67 195 410 649 1009 -0.097 0.225 -0.46 
1541 205 55 180 475 783 1622 -0.135 0.515 -0.548 
1541 205 42 195 475 906 1044 -0.083 0.513 -0.557 
1050 211 50 205 465 821 989 -0.126 0.433 -0.512 
1050 203 34 220 460 829 1094 -0.075 0.309 -0.502 
1090 203 14 259 735 1090 1310 -0.091 0.25 -0.496 
1090 217 22 309 650 1147 1878 -0.12 0.7 -0.6 
1090 203 14 279 760 1251 1928 -0.12 0.734 -0.642 
1141 216 57 223 457 771 1168 -0.097 0.257 -0.464 
1141 227 59 277 814 925 1127 -0.066 0.309 -0.514 
1141 220 53 199 418 695 1117 -0.096 0.264 -0.462 

A538Aa 185 67 405 1482 1515 1655 -0.065 0.3 -0.62 
A538Ba 185 56 460 1793 1860 2135 -0.071 0.8 -0.71 
1541F 206 49 290 889 951 1276 -0.076 0.68 -0.65 
1541F 206 60 260 786 889 1276 -0.071 0.93 -0.65 

A538Ca 180 55 480 1931 2000 2240 -0.7 0.6 -0.75 
AM-350b 180 20 496 1861 1905 2690 -0.102 0.1 -0.42 

H-11 205 33 660 2034 2585 3170 -0.077 0.08 -0.74 
RQC-100b 205 43 290 896 940 1240 -0.07 0.66 -0.69 
RQC-100b 205 67 290 883 930 1240 -0.07 0.66 -0.69 

10B62 195 38 430 1510 1640 1780 -0.067 0.32 -0.56 
1005-1009 205 73 90 269 360 580 -0.09 0.15 -0.43 
1005-1009 205 66 125 448 470 515 -0.59 0.3 -0.51 
1005-1009 200 64 125 400 415 540 -0.073 0.11 -0.41 
1005-1009 200 80 90 262 345 640 -0.109 0.1 -0.39 

1015 205 68 80 228 415 825 -0.11 0.95 -0.64 
1020 205 62 108 262 440 895 -0.12 0.41 -0.51 
1040 200 60 225 345 620 1540 -0.14 0.61 -0.57 
1045 200 65 225 634 725 1225 -0.095 1 -0.66 
1045 200 51 410 1365 1450 1860 -0.073 0.6 -0.7 
1045 205 59 390 1276 1345 1585 -0.074 0.45 -0.68 
1045 205 55 450 1517 1585 1795 -0.07 0.35 -0.69 
1045 205 51 500 1689 1825 2275 -0.08 0.25 -0.68 
1045 205 41 595 1862 2240 2725 -0.081 0.07 -0.6 
4130 220 67 258 779 895 1275 -0.083 0.92 -0.63 
4130 200 55 365 1358 1425 1695 -0.081 0.89 -0.69 
4142 200 29 310 1048 1060 1450 -0.1 0.22 -0.51 
4142 205 48 380 1379 1415 1825 -0.08 0.45 -0.75 
4142 200 42 450 1586 1760 2000 -0.08 0.4 -0.73 
4142 200 37 450 1862 1930 2105 -0.09 0.6 -0.76 
4142 205 35 475 1724 1930 2170 -0.081 0.09 -0.61 
4142 205 27 560 1689 2240 2655 -0.089 0.07 -0.76 
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4142 200 47 400 1448 1550 1895 -0.09 0.5 -0.75 
4142 200 20 475 1896 2035 2070 -0.082 0.2 -0.77 
4340 195 43 243 634 825 1200 -0.095 0.45 -0.54 
4340 200 38 409 1372 1470 2000 -0.091 0.48 -0.6 
4340 195 57 350 1172 1240 1655 -0.076 0.73 -0.62 
5160 195 42 430 1531 1670 1930 -0.071 0.4 -0.57 
52100 205 11 518 1924 2015 2585 -0.09 0.18 -0.56 
9262 205 14 260 455 925 1040 -0.071 0.16 -0.47 
9262 195 33 280 786 1000 1220 -0.073 0.41 -0.6 
9262 200 32 410 1379 1565 1855 -0.057 0.38 -0.65 
950C 205 69 150 324 565 970 -0.11 0.85 -0.59 
950X 205 65 150 345 440 625 0.075 0.35 -0.54 
950X 205 72 156 331 530 1005 0.1 0.85 -0.61 
980X 195 68 225 565 695 1055 -0.08 0.21 -0.53 
1144 195 33 265 717 930 1000 -0.08 0.32 -0.58 
1144 200 25 305 1020 1035 1585 -0.09 0.27 -0.53 
950C 205 64 159 315 565 1170 -0.12 0.95 -0.61 

SNCM630 196 49 327 951 1100 1270 -0.073 1.54 -0.823 
SNCM439 208 37 323 950 1050 1380 -0.072 1.89 -0.801 

525C 209 52 153 280 508 821 -0.096 0.216 -0.458 
545C 206 39 234 590 798 1400 -0.107 0.449 -0.564 

SFNCM85S 201 66 241 565 825 1040 -0.092 0.316 -0.522 

SF60 208 53 167 580 820 978 -0.082 0.187 -0.439 
SCM435 210 66 300 795 951 1100 -0.067 0.996 -0.708 
SCM440 204 36 319 846 1000 1400 -0.088 0.675 -0.65 

 

REFERENCES 
[1]Dowling NE. “Mechanical behaviour of materials”, New 

Jersey:Prentice-Hall; 1993. 

[2] Bannantine JA, Comer JJ, HandrockJ,“Fundamentals of metal fatigue 
analysis”, New Jersey: Prentice-Hall. 

[3] Mitchel MR. “Fatigue and microstructure. Metals Pack (OH)”, 
American Society for Metals; 1979, p. 385. 

[4] Manson SS. “A complex subject—some simple approximations”, 
Experimental Mechanics 1965;5: 193–226. 

[5]Muralidharan U, Manson SS. “Modified universal slopes equation for 
estimation of fatigue characteristics”, ASME Trans J Engng Mater Tech 
1988;110:55–8. 

[6] Ong JH. “An improved technique for the prediction of axial fatigue 
life from tensile data”,Int J Fatigue 1993;15:213–9. 

[7] BaumelJr A, Seeger T.,“Materials data for cyclic loading, 
Supplement I”, Amsterdam: Elsevier Science Publishers; 1990. 

[8] Roessle ML, FatemiA.,“Strain-controlled fatigue properties of steels 
and some simple approximations”,Int J Fatigue 2000;22:495–511. 

[9] Kim KS, Chen X, Han C, Lee HW,“Estimation methods for fatigue 
properties of steels under axial and torsional loading”,Int J Fatigue 
2001;24:783–93. 

 

[10]SeyedHoseinSadati, JavadAlizadehKaklar and 
RahmatollahGhajar,“Application of Artificial Neural Networks in the 
Estimation of Mechanical Properties of Materials”, K. N. Toosi 
University of Technology, Iran. 

[11]MarkHudsonBeale, MartinHagan,HowardDemuth, “Neural network 
toolbox user guide”, R2012b. 

[12] J.R. Mohanty , B.B. Verma, D.R.K. Parhi, P.K. Ray,“Application of 
artificial neural network for predicting fatigue crack propagation life of 
aluminumalloys”, Archives of computational material science and 
surface engg., 2009, Vol-1, issue-3. 

[13] Cheng Y, Huang WL, Zhou CY.,“Artificial neural network 
technology for the data processing of on-line corrosion fatigue crack 
growth monitoring”,Int J PresVes Pip 1999;76:113–6. 

 [14]Haoyu, Bogdan M. Wilamous Ki, “Book on intelligent system”, 
2010. 

[15] Kang JY, Song JH,“Neural network applications in determining the 
fatigue crack opening load”,Int J Fatigue 1998;20(1):57–69. 

 [16] Guo Z, ShaW.,“Modeling the correlation between processing 
parameters and properties of mar aging steels using artificial neural 
networks”,Comput Mater Sci 2004;24:12–28.

 

162




