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Abstract— In the present work, extended finite element 

method (XFEM) has been extended to simulate the large 

deformation stable crack growth problems using finite strain 

plasticity. In XFEM, special enrichment functions are 

employed in the portion of domain where discontinuity and 

singularity are found whereas the rest of domain is modeled 

using finite element method. The modeling of large 

deformation is performed using updated Lagrangian 

approach. The nonlinear equations obtained as a result of 

large deformation and nonlinear material behavior, are 

solved by Newton-Raphson approach. Von-Mises yield 

criterion has been employed along with isotropic hardening 

to model finite strain plasticity. The elastic-predictor and 

plastic-corrector algorithm is employed for stress 

computation. To verify the proposed CTOA criterion, the 

results are compared with J-R criterion. Two problems i.e. 

crack growth in compact tension specimen and crack growth 

in triple point bend specimen are solved under plane stress 

condition to demonstrate the accuracy and capability of the 

proposed crack growth criterion. 

Keywords—Stable crack growth; XFEM; large 

deformation with finite strain plasticity; updated Lagrangian 

approach; Von-Mises yield criterion; isotropic hardening 

I.  INTRODUCTION  

Generally, fracture analysis may be performed using 
linear or nonlinear models. Most of the components of the 
structure are subjected to different type of loading like 
tension, shear and torsion. It is well known that the 
component made of ductile material has a stable crack 
growth before instability. Thus, the instability may occur at 
a higher load than the crack initiation load in ductile 
materials. Therefore, elasto-plastic fracture analysis is 
important to get the full utilization of the material. In the 
past, stable crack growth in ductile materials under mode-I 
loading has been studied to develop the efficient 
techniques for local and global fracture criterion. Some of 
the criteria to characterize the ductile fracture are crack tip 
opening angle (CTOA) [1,2], J-integral [3,4], tearing 
modulus [5], and strain energy [6].  

Among these criteria, the crack tip opening 
displacement (CTOD) or crack tip opening angle (CTOA) 
at a specified distance from the crack tip is the most suited 
criteria for the modeling of crack growth. The crack tip 
opening angle (CTOA) is obtained for compact tension 
specimen [7]. Ma et al., [8] investigated the stable crack 
growth in aluminum and concluded that the CTOD 
remains constant under mode-I and mode-II loading. Lam 
et al., [2] observed that CTOD/CTOA do not remain 
constant for stable crack growth under plane strain 
conditions. The initial critical value of CTOD is high due 
to the crack blunting then it remains constant for further 
crack growth. Luxmoore et al., [9] experimentally 
investigated that CTOA remains constant from the onset of 
stable crack growth in aluminum alloys but have different 
CTOA values for different crack configuration. 

In the past years, a number of numerical methods such 
as boundary element method [10], finite element method 
[11], meshfree methods [12] and extended finite element 
method [13] have been developed for the simulation of 
fracture problems. In finite element method conformal 
meshing is required, therefore crack growth modelling is 
very difficult. To avoid this problem extended finite 
element method has been widely used in fracture 
mechanics problems. In XFEM, the effect of discontinues 
are taken into account by adding some enriched functions 
into standard finite element approximations, therefore 
conformal and remeshing is not required.   

In this present work, XFEM is applied to simulate the 
fracture problems. The non-linear equations obtained as a 
result of large deformation with plasticity are solved by 
Newton-Raphson technique. Von-Mises yield criterion 
with isotropic hardening is used to determine the yielding 
of the material. Constant and varying type of CTOA 
schemes are determined iteratively to reproduce the 
experimental results. Several problems are simulated using 
CTOA/CTOD scheme, to check the effectiveness of the 
criterion in stable crack growth analysis. 
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II. MATHEMATICAL FORMULATION 

A. Modeling of Large Deformation with Finite Strain 
Plasticity 

Generally, in elasto-plastic analysis two types of non-
linearity occurs; (i) material non-linearity and (ii) 
geometric non-linearity due to large deformation. In this 
work, geometric nonlinearity is modeled using updated 
Lagrangian approach. The governing equations for elasto-
plasticity with large deformation are given as [14], 

.∇ + =σ b 0  in Ω                            (1) 

where, σ  is the Cauchy stress tensor, b  is the body 

force per unit volume and Ω  is the initial domain. In 
updated Lagrangian approach, "(1)" can be expressed in 
the variational form as 

2 2 1 1

1 1 1 1

1

1

( ) ( )

0

ij ij i i

i i
t

S E d b u d

t u d

δ δ δ

δ

Ω Ω

Γ

= Ω− Ω

− Γ=

∫ ∫

∫

Ψ u

         (2)                                                        

where, 2

1 ijS  are updated second Piola–Kirchhoff stress 

tensor and 2

1 ijE  are the incremental updated Green-

Lagrange strain tensor.                                      
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Since, the incremental displacements 
i
u  are very small 

in updated Lagrangian approach hence the following 

approximation can used 1

1 1
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where, 
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Alternatively, the first and second terms of "(5)" can 
be written as,  
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Using "(6)" and "(7)" "(5)"can be further written as, 

mat
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Using 
ext ext

T

δ=R u f  and 
int int

T

δ=R u f , "(8)" can be 

modified as, 

mat

ext int
( ) ( )T geo T
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where, external force (
ext
f ) and internal force ( intf ) can 

be defined as, 
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From "(10)" finally we get, 

mat

ext int
( ) -geo
+ =K K u f f                    (12)                                                    

where, mat

K and geo

K are the material tangent stiffness 

matrix and geometric stiffness matrix respectively; 
σ
M  is 

the matrix of Cauchy stress components; and B , G  are 
Cartesian shape function derivatives matrix. 

Von-Mises yield criterion with isotropic strain 
hardening is used to obtain the stress level at which 
plasticity begins. During any increment of stress, the 
change of strain are assumed to be divisible into elastic 
and plastic components [15], 

( ) ( )e p

ij ij ijd d dε ε ε= +                        (13)                                                                                                                      

After decomposing the stresses into deviatoric and 
hydrostatic components and assuming the associated 
theory of plasticity, "(13)" can be written as,  
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where, f is the yield function and dλ  is a 

proportionality constant termed as the plastic multiplier. 
Now the elasto-plastic incremental stress-strain relation is 
obtained as,  

epd d=σ D ε                                 (15)                                                                                                                

where,  
T

D D

ep T

DA
= −

+

d d
D D

d a
 ,   ,

T T

D
=d a D   ,

T
F∂

=
∂

a

σ

  

and   
1 F

A dk
d kλ

∂
= −

∂
  

As stated above, the associated theory [16] of 

plasticity, f Q≡ , yield function and potential function are 

identical, thus the elasto-plastic constitutive matrix epD  

becomes symmetric. 

B. Displacement Approximation for Crack 

In XFEM, Discontinuities are modeled by locally 
adding some enrichment terms into the standard finite 
element approximation. A shifted enrichment is used to 
recover the Kronecker delta property in the enriched 
elements. In two-dimension, at a particular node of 

interest ix , the displacement approximation can be written 

as [13,17], 
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where, 
i

u  is a nodal displacement vector associated 

with the continuous part of the FE solution, 
i

a  is the 

nodal enriched degree of freedom associated with 

discontinuous Heaviside function ( )H x , and i

α

b  is the 

nodal enriched degree of freedom vector associated with 

crack tip enrichment ( ( )
α
β x ). ( )

α
β x  is the asymptotic 

crack tip enrichment functions, n  is the set of all nodes in 

the mesh, 
r

n  is the set of nodes belonging to those 

elements which are completely cut by the crack and An  is 

the set of nodes belonging to those elements which are 
partially cut by the crack.  

C. Discontinuous Enrichment for Crack Face 

The discontinuity in the displacement due to crack is 

modeled by a generalized Heaviside function ( )H x  and 

can be defined as: 

1 ( ) 0
( )

1

if
H

otherwise

χ ≥
= 

−

x

x                  (17)                                                                                                      

where,  ( )χ x  is the level set function. 

D. Asymptotic Enrichment for Crack Tip 

In this enrichment, four functions are used to model 
the radial as well as the angular behavior of asymptotic 
crack-tip stress fields. These functions are given as [18], 
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In the above expression, r  and θ  are the local 

coordinates of the crack tip. For LEFM enrichment 

functions 0.5k = , and for EPFM enrichment functions 

( )1
1

k
n

=
+

, where n is the hardening exponent that 

depends on material. 

The elemental matrices, 
T
K and f  are obtained by 

substituting the approximation function, defined in "(16)" 
into "(10)" and "(12)" 
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The sub-matrices and vectors that appear in the 
foregoing equations are given as 
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where, 1,2,3,4α =  and iΝ  are finite element shape 

function, u

i
Β , a

i
Β , b

i
Β  and b

i

α

Β are the matrices of shape 

function derivatives and u

i
G , a

i
G , b

i
G  and b

i

α

G  are the 

matrices of Cartesian shape function derivatives. 

III. NUMERICAL SIMULATION  

In this section, stable crack growth in compact tension 
specimen is simulated under plane stress condition. The 
nonlinear material behavior is modeled using Ramberg-
Osgood material model given as [18],  

0 0

n

o Y Y

ε σ σ

α

ε σ σ

 
= +  

 
                           (25)                                                                                                                            

where is o

Y
σ  the initial yield stress,

o
ε  is the strain and 

are andn α  the model parameters usually taken from the 

true stress and true strain curve. 

A. Geometry of CT Specimen with dimensions 

The full geometry of a CT specimen is shown in "Fig. 
1". A typical discretization of CT specimen with uniform 
mesh using four node quadrilateral elements is given in 
"Fig. 2". In the meshed geometry, star, hexagon and square 
are used to represent the split, tip and fictitious nodes 
respectively. Fictitious nodes are used to keep the same 
number of unknowns when the crack grows. The crack 
mouth opening displacement (CMOD) is measured at the 
black dotted nodes, just above and below the crack. The 
displacement is applied at the nodes circled in red. The 
green color elements are modeled as stiff elements to avoid 
local deformation. 

1) 3.1.1 Crack Growth in Compact Tension Specimen 

using CTOD/CTOA Criterion  

The CT specimen dimensions, 120mmL= , 

100mmW = , 8mmB= , / 0.43a W =  are shown in Fig. 1. 

The material properties corresponding to AISI 4340 steel 

reported by [19] are: Young modulus, 198GPaE = , yield 

strength, 487MPa
o

Y
σ =  and Poisson's ratio, 0.30µ = . The 

Ramberg-Osgood dimensionless parameters 

( 9.489and 0.845n α= = ) are derived from the true stress 

and true strain diagram of this material. A uniform mesh 
consisting of 63 equally distributed nodes in x-direction 
and 50 equally distributed nodes in y-direction is used for 
the simulation. Crack tip opening or crack tip angle value 
is used as crack growth criterion for this problem. As the 
criterion gets satisfied, the crack length is increased by a 
specified amount (0.81 mm per step). Two different types 
of CTOD/CTOA schemes are used: first constant 
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CTOD/CTOA scheme and second varying CTOD/CTOA 
scheme. CTOD is measured 0.5 mm behind the crack tip 
as shown in "Fig. 3", and CTOA is determined from 
CTOD as CTOA = CTOD/0.50 radian. 

 
 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
 
 
 

 

 
 
 

 

 

 

 

 

 

 

 

 

2) Constant CTOD/CTOA scheme 

In this scheme, CTOD/CTOA remains constant 
throughout the stable crack growth analysis. The different 
critical values of CTOD/CTOA are used in numerical 
experimentation. For selected assumed values of 
CTOD/CTOA, the load versus CMOD diagrams are 
predicted and compared with experimental results as 

shown in "Fig. 4". The crack initiation load
i
P  and 

maximum load 
max
P  are compared in Table 1 for different 

trial values of CTOD/CTOA. From these results, it is 
observed that as the CTOA value increases, the error in 
crack initiation load decreases but the same in maximum 
load increases. A significant difference is found between 
experimental and predicted CMOD value corresponding to 
the maximum load. For CTOA = 0.0310 radian, a 
difference of 0.14% is found between experimental and 
predicted crack initiation load whereas a difference of 
8.18% is noticed in maximum load. A similar observation 
in maximum load is found by [2, 20]. By using CTOA = 
0.0280 radian and 0.0290 radian, the error in the maximum 
load decreases further but the error in predicting crack 
initiation load increases. The variation of load and J-
integral for different constant CTOD/CTOA values is 
shown in "Fig.5". 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

In the "Fig. 5", different critical CTOD/CTOA values 
are used for the simulation. For the some initial load steps, 
the value of CTOD/CTOA increases and obtain the 
critical CTOD/CTOA value, hence extension in crack 
length. This crack extension decreases the CTOD/CTOA 
value for further crack growth keeping the critical 
CTOD/CTOA constant. Initially, the different critical 
CTOD/CTOA values show a very good match between 
load and J-integral values but the difference increases 

Fig. 2. Typical discretization of the CT Specimen 
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Fig. 3. CTOD/CTOA criterion 

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

45

CMOD (mm)

L
o
a

d
 (

k
N

)

 

 

CTOA=0.0310

CTOA=0.0290

CTOA=0.0280

Experimental

Fig. 4. Comparison of experimental and XFEM load versus 

CMOD plots for different constant CTOA values 

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

45

J (MPa.mm)

L
o
a
d

 (
k

N
)

 

 

CTOA=0.0310

CTOA=0.0290

CTOA=0.0280

Fig. 5. Load versus J-integral plots for different CTOA 

values 

Fig. 1. Compact tension (CT) specimen with dimensions 

W 

L

0.5W 

a 
0.37W 

1.2W 

220



 

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013 

 
 

with the crack extension. Load versus a∆  variation for 

different constant CTOA values are given in "Fig. 6". The 
maximum load value increases with the increase in 
CTOD/CTOA values. The stable crack growth is found 

same for all the cases. A stress contour plot of yyσ  for 

(constant CTOA = 0.0310 radian) corresponding to the 
final stage loading is shown in "Fig. 7". The stress level is 
plotted in MPa.  

TABLE I.  COMPARISON OF PREDICTED LOAD AND CMOD BASED 

ON DIFFERENT TRIAL VALUES OF CTOD/CTOA CRITERION WITH 

EXPERIMENTAL VALUES FOR / 0.43a W =  

CTOA 

(radian) 
i
P  

max
P  

Exp. XFEM % error Exp. XFEM % error 

0.0280 18.00 16.97 5.72 40.40 41.11 1.73 

0.0290 18.00 17.50 2.76 40.40 42.76 5.53 

0.0310 18.00 18.03 0.14 40.40 44.00 8.18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3)  Varying CTOD/CTOA scheme 

Two more schemes of varying CTOD/CTOA with crack 
extension are further considered as shown in "Fig. 8". The 
initial CTOD/CTOA values for both the schemes are 
0.0155mm/0.0310 radian. In the first scheme, the value of 
CTOA decreases initially and then increases and finally 

becomes constant. In the second scheme, the CTOA 
values decreases and then remains constant. The results 
obtained by these two approaches are compared with 
experimental data as shown in "Fig. 9" and Table 2. From 
these results, an overall improvement is observed in the 
predicted load versus CMOD plot. From the table, it is 
observed that the scheme-1 has smaller error in both the 
maximum load and CMOD.  

TABLE II.  COMPARISON OF PREDICTED LOADS AND CMOD BASED 

ON DIFFERENT SCHEMES WITH EXPERIMENTAL VALUES FOR / 0.43a W =  

 

From the results predicted using different schemes, it 
is clear that the initial stages of crack extension are 
associated with the decreasing CTOD/CTOA values. This 
type of variation in CTOD/CTOA values has been used by 
other investigators [1,2]. 

 

 

 

 

 

 

 

 

 

 

 

 

B. Crack Growth in Triple Point Bend Specimen using J-

R Curve 

The geometric dimensions of triple point bend (TPB) 

specimen are taken as 50.8mmW = , 25.04mmB= , 

362mmL= , 31.90mma =  as shown in "Fig. 10". The 

Scheme 

No. 
i
P  

max
P  

Exp. XFEM % error Exp. XFEM % error 

Scheme-1 18.00 18.025 0.14 40.40 40.933 1.32 

Scheme-2 18.00 18.025 0.14 40.40 38.815 3.92 
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Fig.8. Two schemes of varying CTOA with crack growth  
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material used is HY100 steel, whose properties are taken 
from the literature [4] as follows: Young 

modulus 200GPaE = , yield strength 0
710MPa

Y
σ =  and 

Poisson's ratio 0.30µ = . The Ramberg-Osgood material 

model ( 15.5n =  and 0.85α = ) defined in "(25)" is used to 

model the nonlinear behavior of the material. A uniform 
mesh consisting of 80 equally spaced nodes in x-direction 
and 40 equally spaced nodes in y-direction is used for the 
simulation. A crack increment of 0.20 mm per instance is 

taken for the simulations. The value of 
cr

J  is 180 MPa-

mm. 

 

 

The stable crack growth analysis in TPB specimen is 
carried out using bilinear variation of CTOA with the 
crack extension. Different CTOA values are used for 
crack extension in numerical simulation. CTOA = 0.145 
radian for crack initiation is found to be most suitable. 
After crack initiation, critical value of CTOA decreases to 
0.120 radian, and then it remains constant during further 
crack extension. The load versus CMOD values obtained 
using CTOA and J-R criteria are shown in "Fig. 11". From 
the results presented in "Fig. 11", it is observed that the 
results reproduced by above assumed critical CTOA are 
found in good agreement with those obtained using J-R 
criterion. A similar CTOA variation has been assumed 
earlier by other researchers [2, 21]. 

 

 

 

 

 

 

 

 

 

 

 

 

The J-R and above assumed CTOA criteria are further 
used for compact tension specimen. The dimensions of the 
CT specimen are used as reported in [22] and the material 

properties are taken from the paper [4]. A comparison of 
load with CMOD using different criteria is shown in 
"Fig.12". The load–CMOD plots are found in excellent 
agreement. Hence, it can be concluded that the critical 
CTOA can be used as a fracture criterion for crack growth 
in different types of specimens. 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSIONS 

 In the present study, stable crack growth in CT and 
TPB specimens has been modeled and simulated by 
XFEM under plane stress condition. Scope of 
CTOD/CTOA criterion for the stable crack growth has 
been numerically investigated. Various constant critical 
values of CTOD/CTOA are assumed, and the load versus 
CMOD plots was obtained. A good agreement in crack 
initiation load was observed but the maximum load was 
underestimated. Later, two schemes with varying critical 
CTOD/CTOA are used. These schemes predict the crack 
initiation and maximum loads close to the experimental 
values. 

Stable crack propagation in triple point bend specimen 
has also been modeled using J-R approach. Again, a good 
match with experimental results has been observed. A 
variable critical CTOA scheme with “initially decreasing 
and later constant” type CTOA is found to be in good 
agreement with the experimental results. The J-R curve 
and the critical CTOA values obtained from the simulation 
of triple point bend specimen are further used to model a 
CT specimen, and the load–CMOD plots obtained by these 
two criteria showed an excellent agreement in the results. 
On the basis of present simulations, it can be concluded 
that CTOD/CTOA is an effective criterion for modeling 
stable crack growth in ductile materials. This work can be 
further extended to simulate stable crack problems under 
mixed mode loading.  
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