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Abstract— In last decade, isogeometric analysis (IGA) has standard Galerkin method. First-order, shear-deformable
gained a lot of interest among the scientific community in  |Jaminate composite plate theory is utilized in deriving the
solving various engineering problems. Nowadays, IGA has  governing equations using a variational formulation for
been extended to many scientific and engineering areas e pon-linear analysis of laminated composite plates [17].
including fracture mechanics. This paper presents the In the present work, XIGA is used for the simulation

simulation of stationary plane crack problems using
extended isogeometric analysis (XIGA). In XIGA, both of planar crack problems. Edge crack, center crack and

geometry and solution are approximated using NURBS basis double edge crack problems are solved using XIGA. The
functions. Heaviside function is used to model the crack face, €ffect of crack length and crack inclination is seen on the
while crack tip singularity is modeled using asymptotic crack ~ Stress intensity factor. The value of stress intensity factor
tip enrichment functions. The various crack problems i.e. left  (SIFs) is computed using domain based interaction
edge crack, centre crack and double edge crack are solved integral approach. It is concluded that the value of SIF
using XIGA. The value of stress intensity factor (SIFs) is  jncreases with increase in the crack length and the value

computed using domain based interaction integral approach. of SIF decreases with increase in crack inclination
These simulations showed that SIF obtained using XIGA '

with higher order NURBS basis functions provide more II.  ISOGEOMETRIC ANALYSIS
accurate results as compared to those obtained by XFEM.
A. Basis Function

Keywords—Edge crack; NURBS; Extended Isogeometric  The knot vector, B-spline and NURBS basis function

analysis (XIGA); Discontinuities; Enrichment Functions; are discussed in this section. B-splines basis functions are
built from piecewise polynomial functions. The details of
. INTRODUCTION NURBS can be seen in [10]. The knot vecris defined
Nowadays, most of the engineering problems ardy a set of coordinates, or knots, which gives information
solved using FEM. It suffers from the disadvantage ofvhere the subintervals are connected.
conformal meshing for solving fracture problems. In= :{gl,gz, ________ fn+p+1} are the real coordinates represent

present, the fracture analysis of structures is presented by ) ) )
the combination of isogeometric analysis (IGA) andthe geometry in parametric space [0, 1], whéreis the
XFEM. In IGA [1], the same (non-uniform rational B- i knot, i is the knot indexj = 1, 2...n+p+1, pand

splines i.e. NURBS) basis functions are used for definin - ; ;
the geometry as well for analysis. So far, the IGA havgq are the polynomial order and number of basis function

: . . ' fespectively used to construct the B-spline curve.
been successfully implemented in various fields such as d X . .
In the isogeometric analysis, different types of knot

%?glr?(?ttod?)rlr:)ageon:i(:giigrt]i%n[z[ll’] C.I(_)Egsi'r\r/]eI;;réit;?%?]eg?gectors are used i.e. open knot vector and closed knot
pology op ' b vector. In the present analysis, open knot vector is used

NURBS based IGA for contact problems [5] gives greaterY\{here end knots are repeated-1 times. B-spline basis
accuracy and faster convergence rate as compared to the

Lagrange based finite elements. Nearly same accuracy &€ defined recursively starting withp=0in the
achieved using NURBS based IGA with fewer degrees ofollowing manner [10].

freedom in fracture mechanics problems [6-7]. The 1 £<&<E,
different problems of stationary as well as propagating Nio= {O otherwise (1)

crack [8] are solved using extended isogeometric analysis
(XIGA). The bi-material body with a curved interface [9]
is analyzed by combination of quadratic NURBS basis _ é-¢ $vprn =S

function and XFEM. Free vibration analysis of thin plates Ni.p($) i & N; p-1($) +ﬁ Ni.1p-2(¢)
done using a NURBS-based isogeometric approach [16]. e e o

The governing and discretized equation for free vibration @)
analysis of Kirchhoff thin plates is obtained using
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The derivatives of B-spline basis function can beOn substituting the trial and test functions and using the
calculated for a given order of polynomial and knotarbitrariness of nodal variations, the following discrete

vector.
dN ,(§) _  p p
- Nip-a(<)- Nii1p-1
d{ é}*p_é} P (E) Ei+p+1_5i+1 P (E) (3)

A rational B-spline curve defined by+1control points
B is given by [10].

PO =" BR,( (4)
Rational B-spline basis functiong () are defined in
the following manner.

WN, ,($) WN; o ($)

RO =i
O LN,

where, R (§) are the NURBS basis functiol, defines

coordinates of control poi('nb(i,Yi), W represents the

Q)

weights associated with control points g, (<) defines

the B-spline basis function of ordgr defined using knot
vector. The length of the knot vector is given as [11].
m=n+p+1

(6)

system of equations are obtained
[K]{a} ={f} (13)
where, K is the global stiffness matrixd is the vector of

nodal unknowns andf is the external force vector.
B matrix of basis function derivatives is given by [8]:

[ OR, ORn,,
a_Xl ..... a—Xl
B=| o R o R (14)
ox, ox,
R OR Rn, 9Rn,
X, ox, oxX, 0%, |

where, R(&) is a vector of NURBS basis function$
(i=12,....... n,) in parametric space ofé=(¢{.¢,).

n, = (p+1)x(g+1) represents the number of non-zero
basis function for a given knot span i.e. element. The
order of curve iné§ and &, directions are defined by

and g respectively. The physical coordinates

The derivative of NURBS basis function can be computedX =(X,, X,) and displacement approximatiafi can be

as
dR,o () _, W(ON; () -W (N, (&)

d¢ ' (W(&)?
NURBS has the following features

()

* NURBS basis function forms a partition of

unityzn: R,(&)=1.

* The support of eachR ,(¢)is compact and
contained in interval &, & 5.1 |-
* NURBS ensure p—1continuous derivatives if

internal knots are not repeated, whereas it produc

(ol continuity if knot has multiplicitk .
B. Isogeometric Discretization
A given domain is partitioned into displacemept

€

derived for a particular poinf =(&,&,) i.e. parametric
coordinate.

Nen

u"(&) = ZR(f)ui (15)
Nen

X(&) = ZR(f)B. (16)

Ill.  EXTENDED ISOGEOMETRIC ANALYSIS

In extended isogeometric analysis, the displacement
approximation is locally enriched to simulate
scontinuities. Few degrees of freedom are added to the
selected control points near the location of a crack.

A. XIGA approximations for cracks

In XIGA, for modeling crack edge and tip, (15) can be
written in generalized form as

en Mt Mot 4
equilibrium equation and boundary conditions are definegh(s) = R (5)H _ a
() 21 R(u + j§:l {(H(Say + kEZlPk(E)(;:lﬁa(f)bK)

traction [, and traction free boundaries. The
as [12]
O.6+b=01in Q (8)
on=t onT, 9)

on=0 onTl:. (10)
where, 6 is Cauchy stress tensor ahdis body force per
unit volume.

The constitutive relation for the elastic material under

consideration is given by Hook’s law:
6= D¢ (12)
A weak form of the equilibrium equation [13] is given as:

jc(u) -g(v)dQ = jb.de + ﬁ.vdr (12)

17)
where H (&) andg, are the Heaviside function and crack

tip enrichment functions respectively. The additional
degrees of freedom related to the modeling of crack face

and crack tip are represented by vectoegand

by respectively. The, is the number ofh, basis function

that have crack face in their support domain apds the

number of basis function associated with crack tip in the
domain of influence. Heaviside functioH (¢)is +1 (if

physical coordinates corresponding to parametric
coordinateg ) is above crack and -1 on the other side of
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discontinuity. The crack tip enrichment functions arethe results are compared with XFEM. The order of
defined as [12]: NURBS basis function is taken 3 in both parametric

: 2] 0 JZ] a directions, and weight of each control point taken as unity.
A ‘[*/FCOSE Nr sin3 N cos; co8 \r s €6S  First order NURBS with uniform weight is equivalent to

the Lagrange finite elements. Uniformly distributed

where,r and @ are the local crack tip parameters. control points are taken for the analysis. The values of
SIFs are computed using domain based interaction
B. XIGA formulation for a crack integral approach. The material properties [15] used for
The first term in the right hand side of (17) evédsa the simulations are:
the displacement field by using classical IGA  Elastic Modulus E =74GPa

approximation, while remaining terms are enrichment poisson Ratio for Material = 0.3

approximation to model discontinuity and represents

solution accurately near the crack tip. The elemental Fracture ToughnessK . =1897.36N fom’”

matrices K and f in (13), are obtained using the In the present work, edge crack, centre crack and

approximation function defined in (15). double edge crack problems are simulated using XIGA. In

Kijgu K”ya Kijgb ohrder tolcheck the accudracyhaglci Ep'\irf(_)rrr:nance 01; XI_GA,
e | Lo Laa b _— . the results are compared wit . The control points
Ky =| K™ Ky~ Ky (hj=123..n, . (18) are taken to b&0x 60 for the purpose of simulation. The

bu ba bb
Kiw Ky Kj knot vectors are taken open and uniform without any
The discretized form of governing equation: repetition. The bottom edge of the plate is constrained in
the y direction. The plate is subjected to tensile load of
T -
fh :{fiu fia fibl fin f ib3 f ib4} (19) og=60N /mm at the tOp edge.

A. Platewith an edge crack and inclined crack
A plate of sizel00mmx 200mnalong with a crack
fu= J‘ RTb do + J‘ RTTdI' (21) length a =30mm and with boundary conditions is shown
o r in Fig. 1. The stress contour plot of,, is depicted in

K= j(B{)Tc BihdQ where r,s=u,a,b,c,d (20)

ol

fa = J' R" HbdQ +J'RT HTtdr (22) Fig. 2. The theoretical stress intensity factor can be
' o ) computed for left edge crack problem.

fho = "B bdQ + | RTB. tdr Where,a =1,2,3,4 (23)
. JeR Ba [RA, K, = CoyJma

Mt

X24

where, R" are represents the NURBS basis function. 2 8 4
g j | c=|112-0282 |+ 1062 | - 21[2| + 304

B', B, B’, B, Bf andB; are the NURBS basis L L L L

function derivatives matrices given by:

(R),,H O s od i)
Rx, 0 X1 The stress intensity factor (SIF) varied with crack
B'=| 0 R,, , B?= 0 (R )YX2 H length and compared with exact results shown in Fig. 3. It
Rx R (R) H (R) H has been observed that the value of SIF increases with
T2 gen, LV T, X1 gy, increase in crack length. In second case, crack length kept

constan{a = 30 mm)and crack angle is varied from 20 to

BY=[B* B B BYY] and _
' ' ' ' ' 50 degree, then effect of crack angle is seen on the SIF.

(nga) . 0 The results computed by using XIGA are compared with
oo e _ XFEM for crack angle variation shown in Fig. 4. It is
B = 0 (RA) 4, where,a=1,2,3,4 evaluated that as crack angle increases, value of SIF
decreases.
(R’B")vxz (R'B")~Xl_sxnen Table 1 presents the error in the mode-I SIF with the
C. Computation of Siress |ntensity Factor exact solution for different sets of control points, and
' P y NURBS order. From Table 1, it is predicted that as the

In the present work, the individual stress intensityNURBS order or the control points increases, the error in
factors K, and K, are obtained using domain form of SIF starts decreasing.

interaction integral [15].

IV.  NUMERICAL SIMULATION AND DISCUSSION

In the present work, edge crack problems are simulated
using XIGA in the presence of inclusions and holes. In
order to check the accuracy and performance of XIGA,
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Table 1: Error in mode-1 SIF computed using XIGA and XFEM for a
left edge crack

Control Net/ Mesh £

£

9 x18 12x24 22 x 42 42 x 82 =

o

=

% error % error % error % error =

XIGA XIGA XIGA XIGA g

w

1 3.46 2.64 1.66 0.0915 2z
>

2 3.44 2.32 118 0.0611 5
3 3.20 115 1.04 0.0576 -
o

I

BESSEESSEEY

|
|
1
25 30 35 40 45 5C
Crack Length in mm

Fig. 3 SIF variation with crack length for a left edge crack problem
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Fig. 2 Stress contour plot,, ) for an edge crack plate Fig. 5 Geometry of centre crack in plate
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A plate of sizel00mmx 200 mnalong with a centre
crack length a=30mm is shown in Fig. 5. The
o,, represents the stress contour plot shown in Fig. 6. The

SIF variation plotted with crack length and results are
compared with exact solution shown in Fig. 7. In second
case, crack length of centre crack is kept constant i.e.
a=30mmand crack angle varied from 20 to 50 degree.

The plot of SIFs with crack angle is depicted in Fig. 8 and
the XIGA results are compared with the XFEM results. It
has been concluded from plots that value of SIF increases
with increase in crack length and value of SIF decreases

w
a
S

w
=3
S

N
a
S

Stress Intensity Factor (M Pa(mnilfz)

N}
Q
S

. . . |
with increase in crack angle. 150 !
20 25 30 35 40 45 50
(0] Crack angle (deg)
Yy Fig. 8 SIF variation with crack angle for centre crack
180 C. Plate with double edge crack

In case of double edge crack, a plate of size

160 100mmx 200mnalong with crack lengtha=20mm is
140 shown in Fig. 9. The contour plots ofr,, is depicted in
Fig. 10. In double edge crack problem, crack length of left
1120 crack is kept constant and length of right edge crack
varied from 20 to 50 mm. The variation of SIF is plotted
1100 with crack length and shown in the Fig. 11. Now, the
] I crack length of both edge cracks is kept constant and the
- 180 angle of right edge crack is varied from 20 to 45 degree.
The plot of SIF with crack angle is depicted in Fig. 12. It
160 is concluded from plots that the value of SIF increases
with increase in crack length and value of SIF decrease
40 with increase in crack angle.
20
0
Fig. 6 Stress contour ploU(yy ) for centre crack in plate
650 ———— - DT [ e
=—0— XIGA | | | |
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g
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Fig. 9 Geometry of double edge crack in plate
Fig. 7 SIF variation with crack length for centre crack
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centre edge crack and double edge crack problems. Both
200 the geometry and solution are defined using NURBS basis
function. The SIF value is computed using domain based

180 interaction integral approach. The SIF values are
160 computeq using XIGA gives good agreement with exact
solution in case of left edge crack and centre crack
140 problem. The SIF values are evaluated with variation in
crack angle and then compared with XFEM results. These
120 simulations show that the greater accuracy achieved using
higher order NURBS basis function as compared to
100 XFEM. It is concluded that the value of SIF increases
with increase in the crack length and the value of SIF
80 decreases with increase in crack inclination.
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