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Abstract— In last decade, isogeometric analysis (IGA) has 
gained a lot of interest among the scientific community in 
solving various engineering problems. Nowadays, IGA has 
been extended to many scientific and engineering areas 
including fracture mechanics. This paper presents the 
simulation of stationary plane crack problems using 
extended isogeometric analysis (XIGA). In XIGA, both 
geometry and solution are approximated using NURBS basis 
functions. Heaviside function is used to model the crack face, 
while crack tip singularity is modeled using asymptotic crack 
tip enrichment functions. The various crack problems i.e. left 
edge crack, centre crack and double edge crack are solved 
using XIGA. The value of stress intensity factor (SIFs) is 
computed using domain based interaction integral approach. 
These simulations showed that SIF obtained using XIGA 
with higher order NURBS basis functions provide more 
accurate results as compared to those obtained by XFEM. 

Keywords—Edge crack; NURBS; Extended Isogeometric 
analysis (XIGA); Discontinuities; Enrichment Functions;  

I.  INTRODUCTION  

Nowadays, most of the engineering problems are 
solved using FEM. It suffers from the disadvantage of 
conformal meshing for solving fracture problems. In 
present, the fracture analysis of structures is presented by 
the combination of isogeometric analysis (IGA) and 
XFEM. In IGA [1], the same (non-uniform rational B-
splines i.e. NURBS) basis functions are used for defining 
the geometry as well for analysis. So far, the IGA have 
been successfully implemented in various fields such as 
gradient damage modeling [2], cohesive zone modeling 
[3] and topology optimization [4]. The implementation of 
NURBS based IGA for contact problems [5] gives greater 
accuracy and faster convergence rate as compared to the 
Lagrange based finite elements. Nearly same accuracy is 
achieved using NURBS based IGA with fewer degrees of 
freedom in fracture mechanics problems [6-7]. The 
different problems of stationary as well as propagating 
crack [8] are solved using extended isogeometric analysis 
(XIGA). The bi-material body with a curved interface [9] 
is analyzed by combination of quadratic NURBS basis 
function and XFEM. Free vibration analysis of thin plates 
done using a NURBS-based isogeometric approach [16]. 
The governing and discretized equation for free vibration 
analysis of Kirchhoff thin plates is obtained using 

standard Galerkin method. First-order, shear-deformable 
laminate composite plate theory is utilized in deriving the 
governing equations using a variational formulation for 
the non-linear analysis of laminated composite plates [17]. 

In the present work, XIGA is used for the simulation 
of planar crack problems. Edge crack, center crack and 
double edge crack problems are solved using XIGA. The 
effect of crack length and crack inclination is seen on the 
stress intensity factor. The value of stress intensity factor 
(SIFs) is computed using domain based interaction 
integral approach. It is concluded that the value of SIF 
increases with increase in the crack length and the value 
of SIF decreases with increase in crack inclination. 

II. ISOGEOMETRIC ANALYSIS 

A. Basis Function 

The knot vector, B-spline and NURBS basis function 
are discussed in this section. B-splines basis functions are 
built from piecewise polynomial functions. The details of 
NURBS can be seen in [10]. The knot vector Ξ  is defined 
by a set of coordinates, or knots, which gives information 
where the subintervals are connected. 

{ }1 2 1, ,......... n pξ ξ ξ + +Ξ =  are the real coordinates represent 

the geometry in parametric space [0, 1], where iξ  is the 
thi  knot, i  is the knot index, i  = 1, 2... 1n p+ + , p and 

n  are the polynomial order and number of basis function 
respectively used to construct the B-spline curve.  

In the isogeometric analysis, different types of knot 
vectors are used i.e. open knot vector and closed knot 
vector. In the present analysis, open knot vector is used 
where end knots are repeated 1p +  times. B-spline basis 

are defined recursively starting with 0p = in the 

following manner [10].  
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The derivatives of B-spline basis function can be 
calculated for a given order of polynomial and knot 
vector.
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A rational B-spline curve defined by 1n + control points 

iB  is given by [10]. 
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Rational B-spline basis functions , ( )i kR ξ  are defined in 

the following manner. 
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where, , ( )i pR ξ
 
are the NURBS basis function,iB  defines 

coordinates of control point( ),i iX Y , iw  represents the 

weights associated with control points and, ( )i pN ξ defines 

the B-spline basis function of order p defined using knot 
vector. The length of the knot vector is given as [11]. 

1m n p= + +                                     (6) 

The derivative of NURBS basis function can be computed 
as 

' '
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NURBS has the following features 
• NURBS basis function forms a partition of 

unity ,
1

( ) 1
n

i p
i

R ξ
=

=∑ . 

• The support of each , ( )i pR ξ is compact and 

contained in interval [ 1,i i pξ ξ + + ]. 

• NURBS ensure 1p − continuous derivatives if 

internal knots are not repeated, whereas it produces 
p kC − continuity if   knot has multiplicityk . 

B. Isogeometric Discretization 

A given domain is partitioned into displacementuΓ , 

traction tΓ  and traction free boundariescΓ . The 

equilibrium equation and boundary conditions are defined 
as [12] 

.σ+b 0∇ =  in Ω                                (8)                                                        

ˆ. tn t onσ = Γ                                   (9)                                                                        

. 0 on cnσ = Γ                             (10)                                                                         

where, σ  is Cauchy stress tensor and b  is body force per 
unit volume. 
The constitutive relation for the elastic material under 
consideration is given by Hook’s law: 

Dε=σ                                    (11)                                                                                      

A weak form of the equilibrium equation [13] is given as:  

( ) : ( ) . .
tΓ

d d dΓ
Ω Ω

Ω = Ω +∫ ∫ ∫σ u ε v b v t v                (12)                                                        

On substituting the trial and test functions and using the 
arbitrariness of nodal variations, the following discrete 
system of equations are obtained 

[ ]{ } { }=K d f                               (13)                                                                             

where, K is the global stiffness matrix, d  is the vector of 
nodal unknowns and f  is the external force vector. 
B matrix of basis function derivatives is given by [8]: 

1

1 1

1

2 2

1 1

2 1 2 1

0 ..... 0

0 ..... 0

.....

en

en

en en

RnR

X X

RnR
B

X X

Rn RnR R

X X X X

 ∂∂
 ∂ ∂ 
 ∂∂=  ∂ ∂ 
 ∂ ∂∂ ∂
 ∂ ∂ ∂ ∂ 

           (14)                                                        

where, ( )R ξ
 
is a vector of NURBS basis functions, iR  

( 1,2,.........eni n= ) in parametric space of 1, 2( )ξ ξ ξ= . 

( 1) ( 1)enn p q= + × +  represents the number of non-zero 

basis function for a given knot span i.e. element. The 
order of curve in 1ξ  and 2ξ  directions are defined byp  

and q  respectively. The physical coordinates 

1 2( , )X X X=  and displacement approximation hu  can be 

derived for a particular point 1 2( , )ξ ξ ξ=  i.e. parametric 

coordinate. 
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III.  EXTENDED ISOGEOMETRIC ANALYSIS 

In extended isogeometric analysis, the displacement 
approximation is locally enriched to simulate 
discontinuities. Few degrees of freedom are added to the 
selected control points near the location of a crack.   

A. XIGA approximations for cracks  

In XIGA, for modeling crack edge and tip, (15) can be 
written in generalized form as 

4

1 1 1 1

( ) ( ) ( ) ( ) ( )( ( ) )
cfen ctnn n

h
i i j j k k

i j k

u R u R H a R bα
α

α
ξ ξ ξ ξ ξ β ξ

= = = =

= + +∑ ∑ ∑ ∑

                                                                                       (17)   
where ( )H ξ  and αβ are the Heaviside function and crack 

tip enrichment functions respectively. The additional 
degrees of freedom related to the modeling of crack face 
and crack tip are represented by vectors ja and 

kbα respectively. The cfn is the number of enn basis function 

that have crack face in their support domain and ctn  is the 

number of basis function associated with crack tip in the 
domain of influence. Heaviside function ( )H ξ is +1 (if 

physical coordinates corresponding to parametric 
coordinatesξ  ) is above crack and -1 on the other side of 
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discontinuity. The crack tip enrichment functions are 
defined as [12]: 

( ) [ cos , sin , cos cos , sin cos ]
2 2 2 2α
θ θ θ θβ ξ θ θ= r r r r

 
where, r  and θ are the local crack tip parameters. 

B. XIGA formulation for a crack 

The first term in the right hand side of (17) evaluates 
the displacement field by using classical IGA 
approximation, while remaining terms are enrichment 
approximation to model discontinuity and represents 
solution accurately near the crack tip. The elemental 
matrices K  and f  in (13), are obtained using the 
approximation function defined in (15).  
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The discretized form of governing equation:  
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e
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where, T
iR are represents the NURBS basis function. 

u
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iΒ  are the NURBS basis 

function derivatives matrices given by: 
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    where, 1,2,3,4α =                                      

C. Computation of Stress Intensity Factor 

In the present work, the individual stress intensity 
factors IK  and IIK  are obtained using domain form of 

interaction integral [15]. 

IV.  NUMERICAL SIMULATION AND DISCUSSION 

In the present work, edge crack problems are simulated 
using XIGA in the presence of inclusions and holes. In 
order to check the accuracy and performance of XIGA, 

the results are compared with XFEM. The order of 
NURBS basis function is taken 3 in both parametric 
directions, and weight of each control point taken as unity. 
First order NURBS with uniform weight is equivalent to 
the Lagrange finite elements. Uniformly distributed 
control points are taken for the analysis. The values of 
SIFs are computed using domain based interaction 
integral approach. The material properties [15] used for 
the simulations are: 

Elastic Modulus                   74E GPa=  

Poisson Ratio for Material  0.3ν =  

Fracture Toughness    
3

21897.36 /ICK N mm=        

In the present work, edge crack, centre crack and 
double edge crack problems are simulated using XIGA. In 
order to check the accuracy and performance of XIGA, 
the results are compared with XFEM. The control points 
are taken to be 30 60×  for the purpose of simulation. The 

knot vectors are taken open and uniform without any 
repetition. The bottom edge of the plate is constrained in 
the y  direction. The plate is subjected to tensile load of 

60 /N mmσ =  at the top edge.                

A. Plate with an edge crack and inclined crack 

A plate of size 100mm 200mm× along with a crack 

length 30 mma =  and with boundary conditions is shown 

in Fig. 1. The stress contour plot of yyσ   is depicted in 

Fig. 2. The theoretical stress intensity factor can be 
computed for left edge crack problem. 

 

IK C aσ π=                                                       (24)                                            
2 3 4

1.12 0.23 10.6 21.7 30.4
a a a a

C
L L L L

        = − + − +        
         

                                                                                       (25) 
The stress intensity factor (SIF) varied with crack 

length and compared with exact results shown in Fig. 3. It 
has been observed that the value of SIF increases with 
increase in crack length. In second case, crack length kept 
constant( 30 mm)=a and crack angle is varied from 20 to 

50 degree, then effect of crack angle is seen on the SIF. 
The results computed by using XIGA are compared with 
XFEM for crack angle variation shown in Fig. 4. It is 
evaluated that as crack angle increases, value of SIF 
decreases.  

Table 1 presents the error in the mode-I SIF with the 
exact solution for different sets of control points, and 
NURBS order. From Table 1, it is predicted that as the 
NURBS order or the control points increases, the error in 
SIF starts decreasing. 
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Table 1: Error in mode-I SIF computed using XIGA and XFEM for a 

left edge crack 

 Control Net/ Mesh 
9 x18 12 x 24 22 x 42 42 x 82 

% error % error % error % error 

XIGA XIGA XIGA XIGA 

1 3.46 2.64 1.66 0.0915 

2 3.44 2.32 1.18 0.0611 

3 3.20 1.15 1.04 0.0576 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Plate with centre crack and inclined centre crack 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 SIF variation with crack length for a left edge crack problem 
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Fig. 4 SIF variation with crack angle for a left edge crack problem 
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Fig. 1 Edge crack plate along with direction 
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Fig. 2 Stress contour plot (yyσ ) for an edge crack plate 

227



 
Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013 

 
 

A plate of size 100mm 200mm× along with a centre 

crack length 30 mma =  is shown in Fig. 5. The 

yyσ represents the stress contour plot shown in Fig. 6. The 

SIF variation plotted with crack length and results are 
compared with exact solution shown in Fig. 7. In second 
case, crack length of centre crack is kept constant i.e. 

30 mma = and crack angle varied from 20 to 50 degree. 

The plot of SIFs with crack angle is depicted in Fig. 8 and 
the XIGA results are compared with the XFEM results. It 
has been concluded from plots that value of SIF increases 
with increase in crack length and value of SIF decreases 
with increase in crack angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Plate with double edge crack 

In case of double edge crack, a plate of size 
100mm 200mm× along with crack length 20 mma =  is 

shown in Fig. 9. The contour plots of σ yy is depicted in 

Fig. 10. In double edge crack problem, crack length of left 
crack is kept constant and length of right edge crack 
varied from 20 to 50 mm. The variation of SIF is plotted 
with crack length and shown in the Fig. 11. Now, the 
crack length of both edge cracks is kept constant and the 
angle of right edge crack is varied from 20 to 45 degree. 
The plot of SIF with crack angle is depicted in Fig. 12. It 
is concluded from plots that the value of SIF increases 
with increase in crack length and value of SIF decrease 
with increase in crack angle. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 SIF variation with crack length for centre crack 

20 25 30 35 40 45 50
300

350

400

450

500

550

600

650

Crack length (mm)

S
tr

es
s 

In
te

ns
ity

 F
ac

to
r 

(M
P

a(
m

m
)1
/2

)

 

 
XIGA
Exact

σyy

0

20

40

60

80

100

120

140

160

180

Fig. 6 Stress contour plot (yyσ ) for centre crack in plate 

Fig. 8 SIF variation with crack angle for centre crack 
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Fig. 9 Geometry of double edge crack in plate 
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V. CONCLUSIONS 

In the present work, XIGA has been used for the 
simulation of plane crack problems i.e. left edge crack, 

centre edge crack and double edge crack problems. Both 
the geometry and solution are defined using NURBS basis 
function. The SIF value is computed using domain based 
interaction integral approach. The SIF values are 
computed using XIGA gives good agreement with exact 
solution in case of left edge crack and centre crack 
problem. The SIF values are evaluated with variation in 
crack angle and then compared with XFEM results. These 
simulations show that the greater accuracy achieved using 
higher order NURBS basis function as compared to 
XFEM.  It is concluded that the value of SIF increases 
with increase in the crack length and the value of SIF 
decreases with increase in crack inclination.  
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Fig. 10 Stress contour plot (yyσ ) for double edge crack in plate 

Fig. 11 SIF variation with crack length for double edge crack 
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Fig. 12 SIF variation with crack angle for double edge crack 
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