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Abstract— This paper presents a comprehensive compar-
ison of estimation of states for seeker system of a missile using
Sliding Mode Observer and Kalman filter approaches. This
estimation accounts for the angular position and displacement
rates of the seeker pitch and yaw gimbals. These seeker
body rates are required to estimate the line of sight (LOS)
rate to determine target position. Both estimation approaches
are simulated and a comparative analysis is presented. The
peculiar advantages of the two methodologies; i.e. parametric
robustness of SMO and noise damping of Kalman filter, have
been validated in simulation.

Keywords – Seeker System; Sliding Mode Observer; Extended
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I. I NTRODUCTION

The seeker system of a missile works to detect
the target by performing a scan of the area in the final
phase of missile’s launch and hit trajectory. This operation is
practically realized with a two axis gimbal structure, which
forms the skeleton of this seeker system. The sensor or the
energy sensing device is the payload of this gimbal structure.
The sensor pointing control is achieved with two DC motors
which provide the actuating torque to the two channels of the
gimbal structure, yaw and pitch. Yaw channel is the outer
gimbal which provides movement in horizontal (azimuth)
plane and pitch channel is the inner gimbal providing vertical
movement (elevation) to the sensor [1]. The seeker has to
generate a spiral scan movement to detect the target.

The performance of most modern control systems de-
pends on assumption of near perfect feedback signals which
are not available or are noisy signals. The system used for
the purpose of providing an accurate estimate of state vector
is called an observer. The observer theory was invented
during 1960’s by D.G.Luenberger. The observer also called
Luenberger observer, was proposed to be a dynamic system
which generates an approximate estimate of the state vector
using the plant information i.e. the dynamics and inputs,
outputs. Observers based on sliding mode approach were
first developed by V. Utkin in 1978. Initially this concept
was introduced for linear systems. Major work in the area
of Sliding Mode Observer (SMO) appeared in 1980s by
Slotine et al, Walcott et al etc. [2] [3] [4]. The SMO based

on assumption of bounded uncertainties or non linearities,
does not require its knowledge in designing the observer
dynamics. Using this design concept, many researchers have
implemented SMO for various systems [5] [6]. The SMO
gain is designed by using pole placement approach to ensure
stability of the observer system and asymptotic estimation
error convergence. These observers provide the advantage of
robustness, numerical stability and can be implemented for
various plants.

In 1960, R.E. Kalman proposed the filter design for
prediction, estimation problem, now popularly known as
the Kalman filter [7]. A Kalman filter can be defined as a
optimal recursive data processing algorithm. Kalman filter is
characterized by accurate estimation of state variables under
noisy condition, which makes it suitable for drives, robotic
manipulators and other industrial applications. The algorithm
is formulated in two steps which involve; prediction and
updation. The complete Kalman filter dynamics can be
found to be similar to a Luenberger observer, however the
gain matrix is found via an optimal recursive algorithm
[8]. The Kalman filter is known to be extremely robust
to process noise and output noise but introduces additional
computational complexity.

These Kalman filter and Sliding Mode Observer tech-
niques have been implemented for the state estimation of
seeker system for decoupled yaw and pitch channels. The
mathematical modeling of the seeker system is done by
classical first principle approach.

The mathematical modeling of the seeker system is
described in Section II. A brief theoretical overview of the
Kalman filter and Sliding Mode Observer is presented in
Section III. Simulation results are presented in Section IV
and Section V concludes this comparative study.

II. M ODELING OF SEEKER SYSTEM

The seeker system is mounted at the tip of the
missile and consists of a two axes gimbal system as its core
structure. The outer gimbal or the yaw, provides azimuth
rotation of the payload or the sensing device. The inner
gimbal or the pitch provides elevation. DC motors are
used to provide actuating torque to yaw and pitch gimbals
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configuring the seeker. The gimbal control loop works in
scan and track modes. In the scan mode, the seeker searches
for target within the gimbals field of regard with a spiral
search pattern. Once the target is detected and identified
(through code matching), seeker locks on the target and
tracks the target. In the track mode, seeker is driven by
detection of exact location of target from scan mode, and
current position of missile body. The error in the positions
is continuously reduced to zero till the target is destroyed.
The schematic block diagram for the seeker system is shown
in Fig. 1

Fig. 1: Block Diagram Schematic

The model is represented by decoupled pitch and yaw
channels, with interconnection via disturbance torques due
to body rates and cross coupling. Here
Vm = DC input voltage in Volts,
Im = DC current in Amps,
Rm and Lm = Equivalent resistance (Ω) and inductance
(henry) of motor,
Tm = Equivalent motor torque in Nm,
θm = Motor angular displacement in degrees,
The roll, pitch and yaw components of angular velocities in
body, pitch and yaw frames are given as:

ω =

[

p
q
r

]

;ωy =

[

pk
qk
rk

]

;ωp =

[

pa
qa
ra

]

(1)

Here p, q and r represent the roll, pitch and yaw components
respectively. The inertia matrix of pitch gimbal is considered
for roll, pitch and yaw rotations as,

JA =

[

Jax Dxy Dxz

Dxy Jay Dyz

Dxz Dyz Jaz

]

. (2)

The moments of inertia are denoted by J and products of
inertia by D. The inertia matrix of yaw gimbal can be given
as:

JK =

[

Jkx dxy dxz
dxy Jky dyz
dxz dyz Jkz

]

. (3)

The modeling of seeker system has been completely shown
in [6] [9]. The pitch channel dynamics can be written as;

v̈2 = 12.26Vm − 6.513v̇2 + 95.78(TD − 3× 10−4q̇k), (4)

wherev2 is the pitch channel angular displacement,TD is
the disturbance in pitch channel due to cross coupling with
yaw channel and body rotations of missile system.

TD = (Jaz − Jax)para +Dxz(p
2
a − r2a) (5)

−Dyz(ṙa − paqa)−Dxy(ṗa + qara).

The parameters in theTD expression are the components of
inertia matrix and angular velocity corresponding to yaw and
pitch gimbals [6]. The entire term95.78(TD − 3× 10−4q̇k)
is defined as the disturbance torque in pitch channelTDp.
Therefore, we get the pitch dynamics as,

v̈2 = 12.26Vm − 6.513v̇2 + TDp. (6)

Similarly, the yaw channel dynamics can be written as,

v̈1 = 12.03Vm − 6.415v̇2 + 93.98(Td − (Jaxsin
2v2 (7)

−Jazcos
2v2 +Dxz sin(2v2))ṙk − 5× 10−4ṙ).

where,Td = Td1 + Td2 + Td3,
Td1 = [Jkx+Jaxcos

2v2+Jazsin
2v2+Dxz sin(2v2)−(Jky+

Jay)]pkqk,
Td2 = −[dxz + (Jaz − Jax) sin v2 cos v2 +Dxz cos(2v2)]×
(ṗk − qkrk)− (dyz +Dyz cos v2−Dxy sin v2)(q̇k +pkrk)−
(dxy +Dxy cos v2 +Dyz sin v2)(p

2
k − q2k)

Td3 = v̈2(Dxy sin v2 − Dyz cos v2) + v̇2[(Jax −
Jaz)(pk cos(2v2) − rk sin(2v2)) + 2Dxz(pk sin(2v2) +
rk cos(2v2))+ (Dyz sin v2 +Dxy cos v2)(qa+ qk)−Jaypk].
Substituting disturbance asTDy,

v̈1 = 12.03Vm − 6.415v̇1 + TDy, (8)

where v1 is the yaw channel angular displacement. It is
assumed that the nominal functions and disturbance terms
are Lebesgue measurable and uniformly bounded.

Application of control techniques like State Feedback
control, Sliding Mode Control etc. require the entire state
vector which can be made available by use of estimation
methodologies. These algorithms partially remove the ne-
cessity of sensors. The estimation techniques have particular
features for robustness to disturbances and external noise.
Two of such estimation approaches, Kalman filter and Slid-
ing Mode observer, each with its peculiarities are applied for
seeker system state estimation and their comparative study is
presented. Such a comparison with these two methodologies
is shown in [10] for an Induction Machine.
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III. E STIMATION METHODOLOGIES

A brief overview of the Kalman filter and Sliding
Mode Observer is presented here along with the design
particulars for seeker system.

A. Sliding Mode Observer

Sliding Mode Observers (SMO) evolved as an
application of Sliding Mode Concept for estimation
purpose, imparting its inherent robustness properties. As
with the control technique, the SMO has two design steps:
stable surface consideration and design of observer gain.
The signum function with appropriate gain ensures sliding
on the manifold.

The state available for measurement in both channels is
the angular displacement of the gimbals. The plant dynamics
as described in (6) and (8), respectively for pitch and yaw,
can be written in state space form as;

ẋi = Aixi + biui + eTDi

yi = Cixi.

}

(9)

Herexi is the state vector∈ <2, Ai is state matrix∈ <2×2,
bi is the input matrix∈ <2×1 andCi is the output matrix
∈ <1×2. e = [0 1]T , which represents the disturbance term
in the input channel. Suffix i (i= p and y) denotes both
pitch and yaw dynamics respectively; both having similar
configuration. Inputui ∈ <m and outputyi ∈ <p, where
m is the number of inputs and p is the number of outputs,
both are 1. The state vector has angular displacement and
its velocity as its states.

The system is transformed usingz → Tcxi, so as to get
Ci = [0 Ip], whereIp is the identity matrix of order p. The
system in regular form is given as,

ż1(t) = A11z1(t) +A12z2(t) + b1ui(t) + e1h
ż2(t) = A21z1(t) +A22z2(t) + b2ui(t) + e2h.

}

(10)

h represents the lumped disturbance. Note that due to the
transformationyi = z2. The state vector z is partitioned as
[z1 z2]

T such thatz1 ∈ <n−p and z2 ∈ <p. Sliding mode
observer (SMO) dynamics [3] for the pitch and yaw channels
separately can be written as,

˙̂z1(t) = A11ẑ1(t) +A12ŷi(t) + b1ui(t) + Likisign(s)
˙̂yi(t) = A21ẑ1(t) +A22ŷ(t) + b2ui(t) + kisign(s).

}

(11)
where (̂z1,ŷi) are the estimates of (z1,yi). Sliding surface s
is defined as

s = yi − ŷi = ey. (12)

The observer gain matrixLi ∈ <2×1. The positive scalarki
is the tuning parameter and is chosen to ensure the existence
of sliding. If the error between the estimates and the true
states are written asez1 andey then from (10) and (11) the
following error dynamics are obtained,

ėz1(t) = A11ez1(t) +A12ey(t) + e1h− Liνi
ėy(t) = A21ez1(t) +A22ey(t)− νi.

}

(13)

Discontinuous termkisign(s) is denoted byνi. During
sliding, s = ṡ = 0 ⇒ ey = ėy = 0, hence (13) becomes;

ėz1(t) = (A11 − LiA21)ez1(t) + e1h. (14)

Li is designed to ensure(A11 − LiA21) to be stable.
Stability Analysis
Consider a Lyapunov candidate function as

υ(s) =
1

2
e2y (15)

To ensure sliding on the error manifold,eyėy ≤ 0;
⇒ eyėy ≤ −η|ey|
whereη is a small positive constant.

ey ėy = ey(A21ez1(t) +A22ey(t)− kisign(s))
≤ −|ey|(ki − |A21ez1(t) +A22ey(t)|)

If ki is chosen such thatki > |A21ez1(t) +A22ey(t)|+ η;
then it is ensured that⇒ ey ėy ≤ −η|ey|.

B. Extended Kalman Filter

The Kalman filter is essentially a mathematical
algorithm that implements a predictor-corrector type
estimator that is optimal in the sense that it minimizes the
estimated error covariance when some presumed conditions
are met. The Kalman filter is named after Rudolph E.
Kalman, who in 1960 published his paper describing
a recursive solution to the discrete data linear filtering
problem. In its original formulation, the state has been
estimated at discrete points of time. Kalman filter is known
to estimate the state vector with noisy process and sensor
performances.

The Extended Kalman Filter (EKF) is a direct extension
of standard Kalman filter to nonlinear systems. The Kalman
gain is computed by linearizing the system dynamics. For
the seeker plant under study, the EKF estimation approach
is used for dynamic model in discrete form. As in EKF the
nonlinearities can be considered; the system model is written
in the following form;

ẋi = Aixi + biui + ef(x(t))
yi = Cixi.

}

(16)

Ai is the system matrix in linearized form and f(x(k))
includes the nonlinear terms due to cross coupling and body
rotation as written in (5) and (7). The system matrices are
same as used for the SMO however in discrete form with
the addition of the nonlinearities. The system can be written
in discrete form as;

x(k+1)i = Aix(k)i + biu(k)i + ef(x(k))
y(k)i = Cix(k)i + v(k).

}

(17)

State vector x(k) = [v2(k) ˙v2(k + 1)]T and
[v1(k) ˙v1(k + 1)]T , for pitch and yaw channels respectively.
v(k) is the zero-mean Gaussian random vectors representing
measurement noise. The system uncertainties can be
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considered as process noise. In this paper, EKF is designed
for this non linear model for coupled pitch and yaw channels
separately. The EKF algorithm is given in Appendix A.

IV. SIMULATION RESULTS

The seeker system as modeled in (6) and (8) is
controlled using a Sliding Mode Controller as described in
[9] to obtain the desired spiral scan. To achieve this, the
pitch and yaw channels of the gimbal are given sine and
cosine signals of varying amplitude. This controlled system
is analyzed for estimation using the two approaches - SMO
and EKF. The controller is provided with the estimated state
vector in both the methods. These estimation approaches are
compared with respect to system conditions like parametric
uncertainties, matched disturbances and sensor noise. The
SMO gain matrix is computed using pole placement method-
ology [6]. The Kalman gain though computed recursively at
each instant, requires accurate values of Q and R matrices.
The numerical values of these matrices were chosen as
per the reasonable level of process and measurement noise
magnitude.

A. Parametric Uncertainties

The system parameters are subjected to±5% uncer-
tainties. The SMO being inherently robust to system un-
certainties is expected to give good performance and the
uncertainties in system are considered in process noise
for EKF. Thus the Q matrix is adjusted to give optimum
performance.

Q =

[

0.8 0
0 0.8

]

; R = 0.5
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Fig. 2: EKF: Parametric Uncertainties; Estimation results for
pitch channel
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Fig. 3: EKF: Parametric Uncertainties; Estimation results for
yaw channel

Fig. 2 and 3 depict the EKF estimations with parametric
uncertain conditions. It can be seen that the estimation error
does not converge to zero. The simulation results using SMO
are shown in Fig. 4 and 5.
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Fig. 4: SMO: Parametric Uncertainties; Estimation results
for pitch channel
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Fig. 5: SMO: Parametric Uncertainties; Estimation results
for yaw channel

It can be observed from these figures, that the output
estimation error converges to zero in finite time. This proves
to be advantageous over Kalman filter results. It was also
observed that on changing initial conditions of plant, the
Kalman filter had its estimated signal shifted by the value
of that initial condition. Hence the results of Kalman filter
have been shown with initial conditions zero. Thus it can be
seen that both estimation methods give satisfactory results
with parametric uncertainties.

B. Matched Disturbance in Input Channel

d = 0.1sin(2π1.5)t, a smooth, matched sinusoidal
disturbance is added in the input channel of plant to analyze
the performance of the estimation methodologies. To cater to
the disturbance, the values of Q matrix in EKF is increased
(Q11 = Q22 = 80). Figures 6 and 7 show the estimation
performance for EKF and Fig. 8 and 9 for SMO.
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Fig. 6: EKF: Sinusoidal Disturbance; Estimation results for
pitch channel
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Fig. 7: EKF: Sinusoidal Disturbance; Estimation results for
yaw channel
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Fig. 8: SMO: Sinusoidal Disturbance; Estimation results for
pitch channel
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Fig. 9: SMO: Sinusoidal Disturbance; Estimation results for
yaw channel
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It can be seen that the performance of SMO is unaffected,
thus proving its robustness properties against matched dis-
turbances. The Kalman filter performance is however highly
affected proving its incapability to disturbances in plant input
channel.

C. Sensor Noise

A random noise signal with zero mean and variance
3, is added to the output signal y, that is provided to
the observer/ Kalman filter. Correspondingly, the R matrix
of EKF is increased to 3 and Q matrix has parameters
Q11 = Q22 = 1e−6. The results are shown in Figures 10,
11, 12 and 13.
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Fig. 10: EKF: Sensor Noise; Estimation results for pitch
channel
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Fig. 11: EKF: Sensor Noise; Estimation results for yaw
channel
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Fig. 12: SMO: Sensor Noise; Estimation results for pitch
channel
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Fig. 13: SMO: Sensor Noise; Estimation results for yaw
channel

The variance of noise signal is reduced to 0.1 for SMO.
It can be seen that the SMO estimation is highly corrupted
by the sensor noise whose signal with higher variance is
easily surpassed by Kalman filter to give exact estimations.

V. CONCLUSION

The estimation strategies- Extended Kalman filter
and Sliding Mode Observer are compared in this paper with
respect to their application to a two axis gimbal system
of seeker system of a missile. Few conclusions can be
enumerated from this comparative study;

1) The robustness of the Sliding Mode Observer to
parametric uncertainties and matched input distur-
bances is guaranteed. The Kalman filter fails to
cater to such matched disturbances in the input to
plant.
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2) The Extended Kalman Filter gives approximate
estimations with total insensitivity to output noise.
Thus proper tuning of the covariance matrices im-
parts robustness to noise signals. SMO estimations
get corrupted on introduction of noise in output. For
practical implementations, it is recommended that
corrupted SMO results are to be passed through an
appropriately designed filter.

3) In terms of complexity of implementation; the
tuning of covariance matrices of EKF is a rigorous
task. SMO gains once tuned can be maintained
constant for various matched uncertainties.

Thus, SMO proves to be a robust, simple to implement
estimation methodology and no knowledge of the noise
statistics is required. However, the performance of Kalman
is superior when issue of sensor noise arises.

APPENDIX A
EKF ALGORITHM

A discrete system is represented as;

x(k + 1) = f(x(k), u(k)) + w(k)
y(k) = g(x(k)) + v(k).

}

(18)

Process noise w(k)∼ N(0, Q) and measurement noise
v(k)∼ N(0, R), is assumed to be Gaussian. In practice, the
process noise covariance and measurement noise covariance
matrices (Q and R respectively) might change with each
time step or measurement, however here we assume it to
be constant.

The Kalman filter works in two steps: prediction and
updation [11]. A priori state estimate (prediction) is denoted
asx̂(k)(−) and posteriori state estimate asx̂(k)(+). We can
define a priori and a posteriori estimate errors as

e−k = x(k)− x̂(k)(−)

e+k = x(k)− x̂(k)(+)

The a priori estimate error covariance is thenP (k)(−) =

E[e−k e
−

k

T
] and the a posteriori estimate error covariance is

P (k)(+) = E[e+k e
+
k

T
]. The goal is finding an equation that

computes posteriori state estimate as a linear combination
of an a priori estimate and a weighted difference between
an actual measurement and a measurement prediction. The
algorithm can be summarized as follows:

1) The priori state estimate is computed from system
dynamics with nominal values used in the system
function.

x̂(k + 1)(−) = f(x̂(k), u(k)) (19)

2) The priori estimate error covariance matrix is given
as

P (k + 1)(−) = φ(k)P (k)(+)φ(k)T +Q (20)

whereφ(k) = ∂f
∂x

|x(k)(+).
3) The measurement equation gives the a priori output

estimation

ŷ(k + 1)(−) = g(x̂(k + 1)(−)), (21)

4) Then × m matrix K, is chosen to be the gain or
blending factor that minimizes the a posteriori error
covariance equation. It is called the Kalman Gain.

K(k + 1) = P (k + 1)(−)CT (k + 1) (22)

[C(k + 1)P (k + 1)(−)CT (k + 1) +R]−1

whereC(k + 1) = ∂g
∂x

|x̂(k+1)(−).
5) Thus the posterior state estimate is computed as

x̂(k + 1)(+) = x̂(k + 1)(−) +K(k + 1) (23)
[y(k + 1)− ŷ(k + 1)(−)]
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