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Abstract— In rotating machineries vibration causes varioussprings supported rotating machine is considered and is
problems. The moving parts get fatigued, greater wear and noisgbjected to a harmonic unbalanced force. It is shown that
formation takes place, undue vibration is transmitted to thne critical speed is reduced by using the HSLDS support;
supporting frame or base foundation etc. The predominant Cau%%nsequently, the amplitude of vibration during whirling

of this vibration is unbalanced forces. To reduce the rotor’ . .
response, the machine is mounted on HSLDS (high-static-lo%S reduc_ed as well. At first, _the usefulness Qf '°"‘( stiffness
ynamic) in case of linear mounts is discussed.

dynamic-stiffness) mechanism as proposed in this paper. Like .
equivalent linear support its static stifiness is same but at théhereafter, the HSLDS mounts are introduced and the

same time, it offers a lower dynamic stifiness. So, it has thélynamic responses of the rotor are obtained during small
same capability of carrying the load but has a lower naturabscillations and large oscillations from its static
frequency compared to a linear counterpart. This is fulfilled byequilibrium position. Finally, the advantages and

reducing the values of the critical speed and peak whirlimijtations of using nonlinear HSLDS springs are stated.
amplitude of the rotor, being mounted on HSLDS springs.

In this paper the advantages of HSLDS mounts are explained II.  LINEAR MOUNT

using a 2 DOF model of simple rotary machine. It consists of a A rot hi having t d f freed .
rigid disk having a mass ‘m’ and a shaft, bearings, supports rotary machine, having two degree or ireedom, IS

which are flexible but has negligible mass. To present thanodeled by considering a rotor (rigid) mounted on
advantages of dynamic stifiness with low value, a linear analysi§UPports (flexible) [3, 5]. The exciting unbalanced force
is done for small deflection of the rotor from its static applied at the rotor's centre will cause only the
equilibrium position; in case of large displacement, a nonlineatranslational motion as the machine is considered to be
equation of motion is formed and solved using two termssymmetrical and the assumed masses of flexible supports
harmonic balancg method in MATLAB. The usefulness of thealong with the shaft are negligibleFig.1.1 shows
HSLDS supports is shown by plotting the responses of the rote{:hematic diagram of the modeled machine, where the

with linear and HSLDS mounts simultaneously. Last but not the.,, cantrated mass is located on the disk which is placed
least, the problems due to strong nonlinearity (hardening HSLDS .
mid-way on the shaft.

mechanism) is depicted.

Keywords—rotating machines; HSLDS mounts; low
critical speed; whirling.

l. INTRODUCTION

The whirling of a rotating shaft occurs due to an
eccentric centre of mass of the rotor with respect to its
geometrical centre. The dynamic response of rotating
machinery due to rotating unbalance is discussed
elaborately [1-5]. Here an attempt is made to explore the
nonlinear features of a modeled HSLDS support due to
which the rotating shaft whirls with reduced amplitude.

In this paper, the objective is to run the high speed rotor
steadily by reducing the machine’s own natural frequency
of vibration so that the operating speeds are far beyonglg.1.1 schematic diagram of the shaft-disk model: Initial state with
the critical speeds as quickly as possible. The suspensienlid line and whirling state with dashed line.
systems with low natural frequencies have several usages;
one of them is the vibration isolation where a large static
displacement is prevented by providing a high static
stiffness. For this reason, HSLDS mounts are useful from
isolation perspective. In this paper, a model of HSLDS
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(Va) With the frequency ratioQ,) is shown by the

dashed-dotted line iRig.2.5. Only small displacements of
the shaft occur about its static equilibrium position during
lower speedgQ, <<1) and also spinning of the disk takes

place about its geometrical centre. The maximum
; ; amplitude of vibration occurs at the following frequency
E ratio
\ S g 1

e Q| =—’~‘lf0rf| <<1 (14)

. ““““ ) /1_ ZZIZ

Fig.1.2 Elevation of the whirling shaft-disk model: Eccentricityis the and the correspondlng response amphtUde IS
distance between the centre of mass of the dsland the geometrical - 1 ~ 1 for¢, <<1 (1.5)

V. =
centre of the rotoS. max 2 22
2141-24, !

The dynamics of the shaft-disk system has been This rotational speed of the shaft, for which the
studied by analyzing the motion of the rigid disk’s centreresponse amplitude reaches its maximum, is called the
S in thex-y plane. The axially symmetric shaft and thecritical speed [2]. At high rotational speggs >>1),

flexible supports have negligible masses and the, =y/e tends to 1 i.e. the shaft tends to be displaced by

gyroscopic forces is made zero by neglecting the diSk'%m amount equal to the eccentricigy and the disk spins

rotation. Also, the supports are assumed to haye Mbout its centre of mass. This phenomenon is referred to
coupling between the andy directions and the equations as whirling of shaft and for the isotropic supports, the

representing the motion along two directions are — . - . L
decoupled fully. Thus, the actual system is substituted bmot|on of the whirling shaft traces out a circular orbit.

Wo separate svstems in the x and v coordinates. ea enerally, if the stiffness’s of vertical and horizontal
_sepa y Y ’ %upports are different, the shaft traces out an elliptical
having single degree of freedom (SDOF). The totaOrbit [2, 4,5 and 6]

stiffness (i.e. those of the supports and the shaft) of the

linear springs isk, and k, in thex andy directions and . HSLDSMOUNT
they may be different also. Viscous damping is assumed In a nonlinear suspension system, the low dynamic
with coefficientsC,, ¢, and modeled by dashpots. stiffness of HSLDS (high-static-low-dynamic-stiffness)

springs brings down the natural frequency of oscillations

Resolving the forces i direction, we have without affecting static displacement [7, 8] as well.

2 . -
md— &+ ecost)) = -k x—c % Here, we have considered a system consisting of

dt? X X dt parallel connected springs of negative and positive
Resolving the forces ipdirection, we have stiffness; two inclined springs with same coefficielts

d? ) _ dy acting as ‘negative’ stiffness elements (softening
M2 (y+esin(a)) = _kyy_cya' characteristics) connected in parallel to a vertical spring of
Then the system’s equations of motion are ‘positive’ stiffnessk, ( hardening characteristics).

X + X + kx = mea? cos(ut), (1.1a)

my +cy + ky = mea” sin(at), (1.1b)
wherem is the disk’s mass and the centre of mass is offset
by the eccentricity € with respect to the centre of
rotation. Att = 0, the eccentricity is made in the positive
direction after selecting the phase reference accordingly.
In terms of the displacemeunt(dimensional quantity),
the generic equation is

M + ¢t + ku = mea? cosgt). (1.2)
Non-dimensional form of this equation is
V' +20V +v=0,% cosQ 1), (1.3)
where
v=ufer =yt =¢/2may wy® =k/mQ = wwy . a Q

The various parameters of the linear system are denot
P Y ?:(@].2.1 Representation of a HSLDS mechanism schematically: At the

by the subscripk ) ) _static equilibrium position the (maximum) negative stiffness from the
The solution of (1.3) is the response of the disk withinclined springs is balanced exactly by the positive stifiness of the

linear mounts for a specific frequency [1, 2]. The vertical spring.
functional relationship of non-dimensional amplitude
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There is a unique relationship between the geometry,
being designated by the geometrical parameter iy, l (2.3d)
= Vors .

1 %_1 _
y=a/L,=cosf,and the stiffness of the springs, being 1_;20(1_sz5)

designated by the spring coefficient ratie ky/k, ; it . . 5 _
yields a system with quasi-zero dynamic stifiness at the WNhenKk, <<1,d =Vst,f§ Ko@-Vozs)» Which when

static equilibrium position. The dynamic stiffness d
increases monotonically with displacement on either side . .
of the equilibrium position, and this is least severe wherhe optimal geometrical parameter as

ifferentiated with respect tg,,5 and set to zero, gives

the oblique springs are inclined initially at an angle y _2 (2.3¢)

between 48°and 57° approximately.Non-dimensional ot 3° ’

spring force is given by R 3

) Whenk, = =[2 2.3

f =ka =G+ 2(1-y7 ~0f@2 - 21— p2a+n¥2-3,  (2.1) BMKo =1, Vowt (3) ' (230
h i 2_ ~ 2 CiKotC,

whereu = LI/LO O<y<l When 0<< K, <<1, Vopt = (_j (2.39)

The non-dimensional stiffness of the system is found 3

out by differentiating (2.1) with respect to the The constantsc; and c,can be found out by using the

displacement as values{, =0 and K, =1 respectively in (2.3g) to give
2

- _K y (Ko/2)+1
K=—=1+2)1- , (2.2) (2
kv [ (@2 -2|1-y% +1)3/2] Vot = (5 (2.3h)
whereK is the dimensional stiffness of the system. So, the initial angles for the oblique springs range

At a unique intermediate angle of inclination, beingfrom about 48° to 57° as given by (2.3e) and (2.3f)
represented by,s, there is a stationary point of respectively. The corresponding optimum stiffness ratio
inflexion which corresponds to a stable equilibrium Aot ranges from 1 to 0.6 as we have got from (2.3b).
position with zero stiffness. This occurs at the static The non-dimensional force as a function of the non-
equilibrium position at which the (maximum) negative dimensional displacement is plottedRiy.2.3 for several
stiffness from the inclined springs is balanced exactly byalues of y wheni =1(ek, =k,) . For large initial angles
the positive stiffness of the vertical spring. If (2.2) 'S(such as y=003 and 0.45 inFig.2.3), the inclined

evaluated at the static equilibrium positidig =1~ ) springs dominate the behavior resulting in a region of

and set to zero, then the valueygjs, that gives the negative stiffness. For small initial angles of inclination,
such ag’= 098, the vertical spring dominates such that

2) the combined stiffness of the mechanism is always
Yozs :m , for given value ofl . (2.3a) positive and weakly nonlinear only.

guasi-zero-stiffness, is given by

Equivalently, the value ofl that ensures QZS behavior is 5

y H |
A =—-— for given value ofy. 2.3b
Qzs 2(1 y) g 14 ( ) 1.8

By enforcing the QZS condition (2.3a) in (2.1), we have 16

2 1.4 .
Yazs 1- Yazs (2.3¢)

I-Vazs| (62- 2\/1—yQ2520 +1)%2
The stiffness g

KQZS :1+

ozs) 1S zero at the static equilibrium

08
position u, = /1-)&,s and the displacement range over

which this is small depends op,s as shown irFig.2.2.

06

04
Our interest is the range of displacements about th
equilibrium position for which the stiffness of the system
is less than a prescribed stiffnekg(say), where g, =1 0

means that the stiffness of the system is equal to that Ll': 2.2 Non-dimensional stiffness versus displacement for different
the vertical spring. 19.2. imensi i versus disp i

R combinations of geometrical and stiffness parameters, that yield QZS.
=0,+d, where (. is the static equilibrium

al. .
f—s
position andd is the excursion, normalized by, from
this position wherk o, = K,and is given by
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springs. But during oscillations about this point, the
dynamic stiffness (local slope of the curve) is smaller in
case of the nonlinear spring, which implies the reduction
of natural frequency as well. In the vicinity @k within

the rangeAv (say), a linear behavior is considered.

OA
o
&
/
"
,
./-
Ay .,"
7 0 TiEe g -
1 1 1 ! A 1 ' 1 1 A ’ - H
0 02 04 06 08 .1 12 14 16 18 2 .,
u R4
Fig.2.3 Force—displacement characteristic of the three springs’ syste ,"
whenA =1: the solid line represents the QZS system. ) : _ .
5 displacement
£14
Using a Taylor series expansion, the force can beig.2.4 Force vs. displacement characteristic of linear and nonlinear
expressed as a power series of order N as springs.
Nf " (up) n . . . .
fu)=fuy)+> ——U-uy)", (2.4) Let us consider the same shaft-disk model again. It is
o N now mounted on the HSLDS springs instead of linear

where u,is the point at which the function is expandedsprings. Like the linear case, after decoupling the motions

n S . in the two transverse directions, the equation of motion in
and f"denotes the nth derivative of f .Since the either direction is

displacement of the system about the static equilibrium i + ot + KU + kgU® = mea? cost) 2.7)
position is our interest, the power series for the force is s - N
expanded about this point. By expanding (2.1) using (2_4'j'he above form of equation is called Duffing equation.

and substituting={-+1-y? in that, an approximate A Small Displacements
expression for the non-dimensional force is found to be During small oscillations, the displacement of a 2
) 1 a-y) DOF model (arigid disk on a fI_eX|bIe shgft ora r|g|d rotqr
f(v) =28 +{1—2)l—}v+1/1— y2, (2.5) on flexible supports) of a rotating machine from its static
V3 4 equilibrium position is such that
which consists of a cubic term, a linear term and a 2 ky
constant term. U =<1 (2.8)
Once we consider the oscillation about the static , . 3 ,
equilibrium position, the resultant load (nonlinear) can be The aforesaid condition holds when the system is
expressed approximately as a cubic function of theexc't_ed at a low Ieyel a’_‘d’or th? supports offer small
displacement [9], which is given by nonlinearity SO that it oscillates within the linear part _of
3 the force-displacement curve. In (2.7) related with
fie =k +kgu™, (2.6)  HSLDS mount, the cubic term is neglected and it becomes
where k;and ksdepend on the initial obliquity of two the following equation which is analogous to (1.3) of

inclined springs and on the three spring-coefficients. Herénear mount.

we consider that that the springs have a hardeningni+cu +k,u = mew” cosgt) [Dimensional] (2.9a)
characteristigk, >0) as the systems with a softening V' + 24/ +v = 02 cosQt) [Non-dimensional] (2.9b)
characteristic (k; <0) are not so effective for isolating where

the V|b_rat|on. Ik, =0, the slope _of the r_@nlmgar load- v:u/e,r:%t,Z:c/Zma)n,a)nz =k,/MQ=ww,.
deflection curve at static deflection positi@g)is zero

O g _Here k; <k (dynamic stiffness of linear spring). A non-
(as shown irFig.2.4) and the system behaves like a quasi- . . o
zero-stiffness (QZS) mechanism dimensional paramet@is introduced to take care of the

In Fig.2.4 the desired nonlinear force-deflection curvereduced stiffness of the HSLDS support, where
(dashed-dotted line) is shown along with linear force-k, = 8%k, (8 <1). The natural frequency of the system
deflection curve (solid line). After the application of static with HSLDS mountings decreases to
load (usually the weight of the maching, the static w, = By . (2.10a)
equilibrium position is d4 for both the mounts, which

implies the equality of static stiffness for both type of
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Q, (2.10b) oscillation isa, . During large oscillations, the amount of
B ' nonlinearity and its nature (hardening or softening) are

This reduced natural frequency of the System causes tﬁéken into account by the coefficient of the nonlinear term

damping ratio to increase, whose expression is given by ¢ -
{=¢/B (2.11) Two Terms Harmonic Balance (HB) method is used

Moreover, the amplitude of vibration is decreasedfohr solving t_he differential equation (2.13) with nonlinear
during a specific working speea . The non-dimensional characteristics. It should be noted that the terms related
frequency response is with the_: funda_m(_antal frgquency onl_y are taken in th_e
5 calculation. This is possible by considering the periodic
V. = Unax — Q (2.12) response of the system and when the responses at higher
e \/(1_Qz)z+45292 ' ' order harmonics and sub-harmonics are negligible
compared to the excitation frequency response. Applying
We have used MATLAB program to plot the o harmonic balance method [10], (2.13) becomes a
functional relationship of non-dimensional amplitude ¢,pic equation in terms of the square of the amplitude R at
(Vmax) With the frequency ratiqQ,) of the linear system 5 given frequency rati@
with a damping ratio({;) of 0.75% and compared with
the frequency response of the system with HSLDSR(075%7% +R*21-0Q%)(075a)} + R¥{(1-Q)?+4¢ 0% -Q* =0 (2.14)
mountings wheng = 0.4 = 001875,Q = 2.5Q,.
It is seen that the peak amplitude of the rotating 1he above polynomial equation of amplitude R is

system is less for HSLDS mounts and the correspondingP!ved and plotted to show the advantages of using
frequency (the critical speed) [2], at which the peakHSLDS mounts over the linear mounts and the problems

occurs, is less as well. In other words, when the rotatin§f Using hardening HSLDS mechanism for a continuous

shaft is supported on HSLDS springs, both the peak whiflange of normalized linear frequen€y in Fig.2.6 and in

amplitude and the critical speed are reduced, provided tHeig.2.7 respectively.

response oscillations are small. This is showi g2.5. It should be noted that idr is set to zero, then solving

for R in (2.14), the response of the HSLDS system during

Fr;guency respor?se of the ge'ometrical cer'me of the dis'k during sm'all displacements small displacement of the rotor, as given by (2_12), is

—-—-linear mountings obtained.

HSLDS{nonlinear) mountings | | In Fig.2.6 the frequency on the horizontal axis is

normalized by the frequency,, of the linear system. For

. the linear system, the damping rafjo= 00075and the

!: scaling factorg = 04 are used. So, the damping ratio of
40F I N

Q=

I
60} !
f

50+

§ i the HSLDS isolator if = 001875and the coefficient of
BN i . . . .
w0t |'| _ nonlinearity termg =10™is considered.
i We have used numerical integration (NI) method
0t !{ 1 (ode23 in MATLB) also to validate the plot of non-
;A_ dimensional amplitude W\,,,) as a function of the
or /,* ”-\ iy frequency ratio §2,), which is obtained by the harmonic
. ~ o e . balance (HB) method.
0 05 1 0,15 2 25 3 Carrella [10] discussed the useful details related with

Fig.2.5 Comparison for a system during small oscillations: rotorth® applications of rotating machines in his dynamic
mounted on HSLDS springs (solid) and on linear springs (dashedanalysis comprehensively. Fig. 2.6 the solid and dashed

dotted). line, showing the frequency response of the system, is
B. Large Displacements obtained by solving foQ in (2.14). When the nonlinear
coefficienta and the damping rati9 are subjected to the

The linear theory is valid ifu® <<% as given by following conditions:

3 a< 06/37?, (2.15a)
(2.7). When this is not satisfied during oscillations i.e. 2
oscillations exceed this limit, the dynamics of motion can ¢7<<l, (2.15b)
be rewritten in non-dimensional form as
V' 420/ +v+av® = Q2 cost) (2.13) then the maximum value of amplitu@e,,,) is
where Vinax ~ 2 , (2.16a)
r=apt,d =¢/2mw, ,w? =k /m,Q = wa,,a = kee? [k . 167% -3a

which occurs at the frequency [11]

It is worthwhile to mention that the natural frequency
of the HSLDS mechanism during approximated linear
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0. = a7 (2.16b) value of the coefficientr of the cubic term, equality is
d~ 1672 -3 ' ' imposed between (1.5) and (2.16a) which yields
16 ,, 2
If the rotational spee®@ be increased abo2, , then A =3¢ A= F7). (2.17)
the response amplitude jumps down to lower value
suddenly. — HB (stable)
==== HB (unstable)
BOF| «  Nimethod ; i
70 . ; e LINEAR mount I
— HB (stable) i
- LINEAR mount I
1 4ot
50t i . g
i 2}
wf h -
g h
a h 20t
30 I i 4
H
I 10
20¢ ’1 i '5}
1o : v
P Otk ===
or L L ] ] 05 Q, 1 15
/ N i
* s R ey ST e Fig.2.7 Comparison between a hardening HSLDS isolator (solid-dash)
0= 5 o 1 15 and an equivalent linear mount mechanism (dash—dot) in terms of

) : . . frequency response.
Fig.2.6 System responses are compared: a linear spring mount (dash-q yresp

dot) and a HSLDS mount (solid-dash). In FRF of HSLDS mount, steady

state unstable solutions are denoted by the dashed part. Figure 2.7 shows the nonlinear response curve for a

hardening HSLDS mechanism with= a,,,, = 0001575
Fig.2.6 shows the two response curves of the samas calculated from (2.17) wigh=  00187%= 04.When

system representing linear and HSLDS mounts and arg,:a,l_ , the jump-down frequency becomes equal to the
plotted on the same graph with the same frequency ratio m

for comparison. As the natural frequency of the Iinea|natural frequency of the equivalent linear model and the
model normalizes the rotational speed along the horizont eak amplitude of the HSLDS system becomes equal to

axis, for the linear system the peak occur®atl. It atofan equivalent linear system as well.

should be noted that as the damping coefficienis
maintained constant throughout, so the HSLDS system
has the damping ratio ¢f/3= 001875. Readily (1.5) IV. " DiscussioNs

and (2.16a) provide us the values of peak amplitudes of The potentiality of HSLDS springs for mounting the
the linear system and the HSLDS system respectively. Fdptating machineries is presented by analyzing a simple
the linear system, the maximum response ignodel of a rotary machine with simulation in this paper.

Vmaw = L (Z) )= 6667, whilst that for the HSLDS Application of HSLDS mount to any rotating machine
will cause low natural frequencies of vibration inevitably

SYStem /g, = 2741 due to its low dynamic stiffness. The machine dynamics
Thus, the reduced amplitude of maximum responsean be analyzed well when the working speed is below the
and the occurrence of resonance at a lower frequency afitst elastic mode of the rotor which occurs very often.
the advantages of employing the HSLDS spring system. This analysis would have become more vivid if the degree
C. Hardening HS_DS Mechanism of freedom relatgd to dis_k ro.tation and the gyrosqo_pic
. . effects are considered. Likewise a bouncing and tilting
Fig.2.7 shows the nonlinear response curve of &yq4ion may occur if the disk is not placed centrally and
hardening HSLDS mechanism with a different value ,of mid-way between the two identical supports (non-
where it is compared with the linear model's dynamicsymmetric rotor). Irrespective of these complicacies, in
response as well. It shows the dynamic response whefjs paper probable benefits are outlined, especially when
a=ay, . Itis seen that by increasing the peak value the rotor with HSLDS mounts are operated well above the
of the system’s response with HSLDS mounts can beritical speeds. For this purpose, we have given a
equal (o =a;,)or even beyond(a >a;,)that of a pragmatic view of the rotor's response with linear and

linearly supported system. So, while designing the1SLDS mounts side by side. Nevertheless, due to less

HSLDS mounts one must be careful about the Ieanin%g‘amic stiffness and reduced response, the machine

nature of the response curve towards right as the system]c ugteq on HSLDS springs transmits less force to the
hardening. Otherwise, it is immaterial to use HsLDsfoundations. . . . - .
The support system is not designed in detail in this

mounts instead of the simpler linear mounts. To limit the X . . L
work. For instance, if a flexible coupling is used to

separate the rotor from the motor, it would cause

Proceedings of the*International and IBNational Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013

299



significant positive stiffness as the coupling would havd9]
become an integral part of the support. Prior information
regarding the accurate value of the static load is essenti
so that one can locate the equilibrium position near th
low dynamic stiffness part of the force-deflection
characteristic curve of the nonlinear HSLDS springs[11]
Proper compromise is sought between the nonlinear
dynamic effects and the static deflection for choosing the
amount of nonlinearity. Small damping ratio is considered™?!
to make the isolation good. Care must be taken to keep the
transient part of vibrations as short as possible and to run
the machine through the critical speed as quickly as
possible.

Realizing the characteristic of nonlinear stiffness, an
arrangement of springs is shown king.2.1, which can
exhibit the required stiffness. Other possible arrangements
of elastic elements were considered by Alabuzhev et al.
[7]. Work is going on tailoring of bi-stable composite
structures to produce the required stiffness characteristic
[12].

Despite few practical issues to look into, the
usefulness of HSLDS mounts for controlling the vibration
of rotating machinery has immense potentiality.

0]

CONCLUSION

At first, a simple model of unbalanced symmetric
rotating machine, having two degree of freedom and
mounted on linear springs, has been analyzed from
vibration isolation point of view. Thereafter, HSLDS
(high-static-low-dynamic  stiffness) mounts, having
nonlinear characteristics, were used to bring down the
natural frequency of the vibrating rotary system. The
ultimate effect is the lowering of the critical speeds well
below the working speed with the sufficient control over
the whirling of the rotating shaft. The analytical nonlinear
equation of motion was formulated and solved for this
purpose. The advantages of using HSLDS springs are
shown by comparing the various system-responses plot
wise. At last, the impact of strong nonlinearity due to
rotating unbalance has been pointed out.
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