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Abstract—This paper presents an optimization method to  found the conditions of the full force balance as against the
dynamically balance the complex multloop planar complex vectors used in previous methods [5].

mechanisms. The shaking force and shaking moment . . -
transmitted to the ground are balanced through optimization The complete force balancing alone is not sufficient as

to improve the mechanism’s dynamic performance. The it Will increase shaking moment and/or driving torques.
pareto optimal conditions are proposed considering the The complete balancing of shaking force and shaking
shaking force and shaking moment as two objective Moment is not possible without adding duplicate
functions. First, the force balancing of the mechanism is mechanisms [6]. Use of the duplicate mechanism and/or
obtained numerically. The shaking moment was found adding links which neutralizes inertia is not recommended
increased for a force balanced mechanism. To reduce both due to practical aspects and complexity. However, it could
the shaking force and shaking moment, a multi-objective be used where it needed for the purpose as in slider-crank
optimization problem is formulated and solved using mechanism in multi-cylinder engines [7]. In a fully force-
conventional and genetic algorithm (GA) techniques. The palanced in-line planar four-bar mechanism, the root-
genetic algorithm produces several optimum solutions mean-square (RMS) value of the shaking moment was
(pareto optimal points) and the best solution can be chosen reqyced through optimization in which the feasible limits
from this sgt of.optlmum.solutlons. The optlmlzatlon method of the link parameters can also be considered [8-10]. To
presented in this paper is general and can be applied to any \ninimize different dynamic quantities simultaneously, a
mechanism whereas the analytical solutions already ., 4o off method was developed in which the maximum
available are for the specific mechanisms. The effectiveness | f the bearing f the i t t d th
of the proposed method is shown considering a Stephenson values o € bearing force, the input moment, an e
shaking moment of a constant input speed four-bar

six-bar mechanism. . . L .
mechanism were simultaneously minimized, while
shaking force; shaking moment; optimization; genetic force [11].

algorithm The link masses can be optimally redistributed for

. INTRODUCTION simultaneous reduction in shaking force and shaking
) _ . ) moment. These dynamic forces and moments depend on
Any mechanism in motion, if not properly balanced,|ink masses, their locations of CGs and moment of
transmits forces and moments to its ground body known ggertias. Hence, the optimization problem formulation can
shaking force and shaking moment. These forces angs simplified if links are modelled as point-masses
moments cause vibration and fatigue in the mechanismgonnected firmly [12]. A dynamically equivalent system
and aﬁectllts performance. Several techniques have begp point-masses, referred éguimomentasystem, is used
proposed in the literature to reduce these shaking forcgg represent the inertial properties of the mechanism [13]
and shaking moments. The method for complete forc@fier dynamically representing the links by the system of
balancing is based on the principle of making the totabgyimomental point-masses, the optimum distribution of
center of mass of the mechanism stationary [1]. Thene |ink masses can be found out for dynamically balance
position equation of the total center of mass is written iRhe mechanisms [14-17]. Using two and four point-mass
the terms of the positions of the links of the mechanismy,,dels [18-21], dynamic quantities like driving torque,
first and then the time dependent terms are set equal aking force and shaking moment can be optimally
zero. These analytically derived conditions state the magsyjanced. In another method, the sets of three and seven
distribution of the links to eliminate the shaking forceequimomental point-masses for each link in planar and
completely in simple mechanisms. This method wagpatial mechanisms, respectively, were proposed [22]. The
further extended by considering the force balancggancing problem of planar rigid-body mechanisms can
restrictions arising from the use of prismatic joints within ag|so pe formulated as a convex optimization problem [23-
mechanism and minimum number of counterweightys) 1o determine the optimal shape, position and mass of
needed for full force balance in single and multi-degree of,o counterweights. The evolutionary optimization

freedom planar mechanisms [2-4]. Using the sam§echniques like particle swarm optimization (PSO) and
approach, an another method uses ordinary vectors to
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genetic algorithm (GA) are useful for the purpose ofin (1), t;, {;, and w; , are 3-dimesional vectors, defined
minimizing the multi-objective functions [26]. as the twist, twist-rate, and wrenoh the ith link with

In this paper, the force balancing is achieved for gespecttd, respectively, i.e.,
Stephenson six-bar mechanism by optimizing the point- .
mass parameters of the counterweights. Next, the multi- ¢, :{‘q}; i :{“"} and . {ni} (2)
objective optimization problem is formulated to vy LLf
simultaneously minimize the shaking force and shakinq .
moment. The genetic algorithm is applied for this multi-IN (2), @i and v; are the scalar angular velocity about the
objective optimization problem produces a number ofaxis perpendicular to the plane of motion, and the 2-
optimum solutions known as “pareto optimal points”. Thedimensinal vector of linear velocity of the origin of fittle
best solution can be chosen from this set of optimuniink, O;, respectively. Accordinglyy; andv; are the time

solutions and thus the global optimum solution of theyarivatives ofy, andv; , respectively. Also, the scalar,

roblem can be found very quickly and efficiently. . .
P ya y y and the 2-dimesional vectof;,, are the resultant moment

The structure of this paper is as follows. Section Zyn6yt0; and the resultant force &, respectively. The
presents the equations of motion for rigid body ands, g matricesM; andC; are defined as:
point-masses. The formulation of the optimization ' ' '

problem is shown in section 3. Section 4 presents a L -md'E| and o o 3)
example of Stephenson six bar mechanism which is Mi = mEd  ml G =

solved using the proposed method. Results are presented '
and pareto optimal solutions are found using genetic

algorithm in section 5. Finally, conclusions are given inwherel and O are the 22 identity and zero matrices,
section 6 respectively, and is the 2-dimesional vector of zeros,

whereas the 2 matrixE is defined as:

-Med; O

. EQUIMOEMENTAL SYSTEM OFPOINT-MASSES

. . . o . 0 -
This section discusses the principle of equimomental E = (4)
system of point-masses and the dynamic equations of 1 0

motion for the rigid body are rewritten in terms of the

point-masses parameters. 2.2 Modified Equations of Motion for Equimomental

System of Point-masses

2.1 Equations of Motion of Rigid Body The links of a mechanism can be modeled as rigid bodies
Consider a rigid body moving X-Y plane. The fram&-  for kinematic and dynamic analysis. The mass and
Y is fixed to the body aD;. The link length is defined by moment of inertias of the links govern shaking force and
the distance from the joints); to Oui. A body fixed  shaking moment transmitted to the ground. The
groundX;-Y; is defined such that origin is @ and axisX;  determination and optimization of moment of inertias is
is aligned fromO; to O,,;. The location of the mass center, useful in minimizing the shaking force and shaking
G, is defined by polar coordinated;, and £, as shown in  moment. This problem can be simplified by modelling the
Fig. 1 where the bold-facea), andd; denote the vectors. rigid links as point-masses connected firmly. The essential
For dynamic analysis, the Newton-Euler (NE) equationgequirements for the dynamic equivalence between rigid
of motion for theith rigid link in planar motion with link and the system of point-masses are (1) same mass, (2)
respect to the origirQ,, are written as [27]: same center of mass and (3) same inertia tensor with
. respect to same coordinate frame. Such dynamically

Miti +City =w; (1) equivalent system is called equimomental system of point-
masses [22]. As shown in Fig. 2, a set of dynamically
equivalent system of rigidly connectdd point-masses,
my, located at, g« can be found using the equimomental
conditions.

The conditions used to find the equivalent point-
masses for a rigid body are:

XM =m (5)

k

%”h( I cosf +q )=md cos@ +o;) (6)

%% ke sinfc +q )=md sin@ +a) )
Fig. 1. Planar rigid body kahi =1, (8)

k
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The elements of this matrM; are:

Mag = (Emiklizk)o +(|Z(:mik|iﬁ)c; M 3= Mg, =0;
M 22 = Mgz = (X My ) g + (X M) s
k k
Mip=My = ((% My b SO +01)) o +(E My b SO +0:1))¢)
Mi3=Mg = ((Emklikc(eik +0))o + (Emklikc(gik +0))c)

In (10), the subscripte andc are used for the original
links and the counterweights, respectively. Equation (1)
with these modified terms is used to evaluate the shaking
Fig. 2. Equimomental system of point-masses oftthénk force and shaking moment transmitted to the ground.

wherem and|; are the mass of thi¢h link and its mass 3.1 Design Variables

moment of inertia abou®;. The subscripts andk are The counterweights added to a mechanism hawing
used to represent the link number and the point-masgnoving links, can be represented by a systemkof
respectively. It is important to note here that all theequimomental point-masses per counterweight per link.
vectors are represented in the fixed inertial fra@&Y.  The %-vector of design variables for counterweight for
The NE equations of motion, (1), are now rewritten forijth link is defined as:

the equimomental system of point-masses ofitidink.

Equation (1) does not change except the elements obV,=[m4 4, M6, ... Ml 6] (11)
matricesM; andC;, which are given as:

Similarly, the 3ik-vector of design variables, DV, for the

Zn}kliﬁ =2y ik SO +5)  Zmy 1 CO; +o5) mechanism can be defined as:
k k k
M. =|-% I, S6:, +a) > 0
' kn“:";a"‘+ ! k?k pv=pv; DV} .. DV]] (12)
Zmy i CO + ) Zmy - _ .
k k 3.20bjective Function and Constraints
0 00 The shaking force is defined as the vector summation
B (9)  of all the inertia forces of the mechanism while the
Ci=|- ‘”i%miklikc(gik *o) 00 summation of moments of the inertia forces and the inertia
—; Sy 1y SOy +a;) 0 0 couples abqu_t a joint is defined as the shaking moment
k about that joint [8, 19]. As shaking force and shaking

where C and S are abbreviations for cosine and sinemoment are of different units, they are made
functions, respectively. There are tot&lfBrametersm, dimensionless using the parameters of the first link to

04 1, for k=1, 2,...k if k point-masses are defined for define the combined objective for the optimization

theith link. For a mechanism of moving links, there will problem. Considering the RMS values of the shaking

be total &n point-mass parameters. All or some of theseforce and shaking moment, the optimality criterion for
can be taken as the design variables. simultaneous minimization of them is proposed here as

Minimize z=w f +wW,n 13
.  FORMULATION OF OPTIMIZATION PROBLEM 4 Tsiyms * Wollshrms (13)

H o
For balancing the mechanism using counterweights, Subjecto nf < m < 5m

the point-mass parameters of the counterweights are d <a’ (14)
considered as the design variables in the optimization

2
problem. The matricesvl; and C;, defined in (9) can be md? <1; o o
modified for the counterweight addition as: herew; andw, are used as the weighting factors for giving
weightage to the shaking force and shaking moment as per
Myp -Mpp Myg the requirements in the different cases. The values of
M =[-My; Myy Mool these weighting factors vary between 0 and 1. The
Mg; Mgy Mgg parametersm® al’.ld aj°are repre;entmg the original mass
and length of théh link, respectively.
0 00l (10) IV. EXAMPLE: STEPHENSONSIX-BAR MECHANISM
Ci= _“’i(%miklikc(eik +"'i)o+Emik|ikC(‘9ik *%)g) 00 The proposed method is applied for the balancing of
— 0, XMyl SO +6) o +EMy L SO +4;)) 0 0 Stephenson six bar mechanism as shown in Fig. 3.
k k
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Fig. 3. Stephenson six-bar mechanism detached from the frame

Link #1 and #3 are tertiary links and links #2, #4, #50f several variables starting at an initial estimate. As
are binary links whereas link #0 is fixed. These links areexplained in section 3, the values of weighting factess,
connected by the revolute joints. For the considere@ndw,, may vary depending on the particular requirement.
mechanism, the shaking force and shaking moment at arkebr the problem considered, the standard and optimized
about the joint, 3, between ground and third link are givevalues of the shaking force and shaking moment for
as: different combinations of weighting factor values are
fo == gy +fo3) @Nd Ny, = —(Ngy+Npg +a Xy +nS) (15)  Shown in Table 2. The corresponding design vectors are

given in Table 3.
In (15), f,, andf;are the reaction forces of the ground on

. . L TABLE I. PARAMETERS OFUNBALANCED STEPHENSONSIX-BAR
the links 1 and 3, respectively. Similany, and nyare MECHANISM [1]
the reactions of resultant inertia couple about the joint 1] Link i 1 2 3 4 5
and 3, respectively while§ is the driving torque applied a(m) | 0.05¢ | 0.121 | 0.00: | 0.14C | 0.04¢
at joint 3. As all joints in the mechanism are revolute bi(m) | 0.05¢ 0.00: | 0.15:
' " 7 (deg | 6.0 160 | 40.Z

np1 = Ng3 =0.Considering three point-masses per link, 6, (deg 3.0 00 5.0 19.0 OO

design variables are considered as: g (m) | 0.02¢ | 0.06¢ | 0.00: | 0.082 | 0.02¢
m (kg) | 0.067 | 0.087 | 0.07¢ | 0.17¢ | 0.04(

DV =[m | f 1M £, mdis0,] fori=12,...5 (16)

. . - . TABLE II. RMSVALUES OFSHAKING FORCE AND SHAKING
Now, by putting suitable limits on the link masses and MOMENT
inertias, the optimization problem to reduce shaking force : :
and shaking moment for this mechanism is formulated as: Value | Shaking force Shaking
of (N) moment’
Minimize z=w f +W,N 17 Wi, Wp (N-m)
i ;“""s 27 shrms (7 Original Value 0.045( 3.733.
. 0 1. Only shakinc | 1.0,0.0 0.016¢ 10.861(
Subjecto nf < Z_mk <5m force balance (-63.9) (+190.1)
k=1 2. Both shaking | 0.5,0.¢ 0.019: 2.265.
d <a’ (18) | force and (-57.7) (-39.3)
2 , shaking moment
md;” <1; fori=1..5 balance
The parameters for the unbalanced Stephenson six p&t Only shakinc | 0.0,1.0 0.103: 2.251¢
mechanism are taken from [1] and given in Table 1. Thenoment balance (+127.1) (-39.7)

kine.mati.c SimU|atio.n was Carrie_d out using the #'.I'Tee \S/t;?ukelzggirT?)r;rZTtr|1sets?:e;eiggemptgfcjeor;ggi: increment/decrement over the
MotionView and MotionSolve of Altair HyperWorks 11.0 corresponding values of the original mechanism

software [28]. For given example, link 3 rotates with a

constant speed of n2 radians/second. Thefmiincori

function in Optimization Toolboxof MATLAB [29], was

used to solve this non-linear optimization problem

subjected to constraints as defined in (17) and (18). This

function finds a constrained minimum of a scalar function
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TABLE lIl. DESIGNVECTORS FORBALANCED STEPHENSONSIX-BAR MECHANISM
Case Design vecto
Case (1 0.0309 4.0270 1.7062 0.1197 3.9740 1.7338 0.1537 3.8813 4.8418 0.0365 2.995 -0.0102
w;=1.0w,=0.0 | 3.1573 0.9680 0.0277 3.2215 5.1332 -0.0318 4.9628 1.9128 0.0319 4.9519 1.9128 0.0001 4.9174
5.0231 0.0603 3.4509 1.7738 -0.0503 3.3583 1.8414 0.0123 3.4443 4.5739 0.0349 2.1382|1.9216 -
0.0043 2.4381 2.0465 0.0286 2.2983 4.9177
Case (2 0.4806 1.5366 1.632-0.3290 1.9244 1.5450 0.1526 0.7439 5.1-0.0199 0.9701 1.95 0.0582
w;=0.5w,=0.5 | 0.7075 2.0403 0.0177 1.2373 5.2512 -0.0144 4.3380 2.5218 0.0141 3.5602 1.9263 0.013¢ 2.5912
3.4444 -1.1293 6.6533 0.0172 0.8427 6.2160 0.2306 0.3973 6.6235 5.8622 0.0008 1.5700 [2.2340 -
0.0004 2.1455 2.0325 0.0077 0.1109 3.7604
Case (3 -0.4071 1.1193 1.1352 0.0106 2.5(-0.6537 0.4743 0.9671 7.4688 0.0035 3.577445t 0.0020
w;=0.0w,=1.0 | 3.5776 1.7470 0.0056 3.4643 4.8851 0.0974 0.8426 3.6560 0.0826 2.3066 2.2343 -0.0911 2.3636
2.6041 0.7422 1.2073 0.0586 -1.0356 2.6574 1.1808 0.6861 3.5710 7.7891 -0.1317-0.1939 1.7103
0.2981 -0.1594 1.9258 0.0001 -1.5667 4.7663

For only the shaking force balancing, weighting factor

values,w; andw,, are taken as 1 and O, respectively in
case (1). This results in 63.87 percent reduction in the

shaking force but the shaking moment value in increas

by 190.93 percent. This shows that force balancing

increases the shaking moment in this case. In case (3),
weighting factor valuesy; andw,, are taken as 0 and 1,

respectively for only the shaking moment balancing. As
shown in Table 2, it results in 39 percent reduction in the

shaking moment value while the shaking force i
increased by 127 percent. These two cases support the
that the reduction in one dynamic quantity increases t

other. Thus a trade-off is necessary to reduce both the

shaking force and shaking moment and both the quantit
are assigned equal weighting factor value, i.e., 0.5 in t
objective function (Case 2). The result shows 57.7 and
percent reduction in the values of the shaking force a

15
y f"’"“%
10 % _;;* E
ed kY #
€ 5t % i
@ 3]
the 5 ol
=
.g' 5t & i
x + o
= ! ;
» 10} o & Original
s i & + Case (1)
fact “S¢ L « Case (2)
h 20 ) ) ) + Case (3)
e 02 04 06 08 1
Time
ies
he Fig. 5. Variation of shaking moment with time
39
TABLE IV. OPTIMUM COUNTERWEIGHTPARAMETERS

nd

shaking moment, respectively. The variations in the Case 1| Case 2 Case 3
values of shakin_g fo.rce and shaking moment over entfre Mass (kg) 0304 0304 0078
cycle are shown in Fig. 4 and Fig. 5. Coflé)?ﬁ?r:\livilght am 0.056 0.056 0.056
The point-mass parameters of the counterweights are 0 (deg) 176.3 180.1 105.4
obtained as the optimum design variables. Using tfe Mass (kg)|  0.022 0111 0.393
equimomental conditions presented in (5)-(8), these pointCounterweight a(m) 0126 0121 0123

masses can be converted into the rigid body. The forlink 2 i . -
optimized counterweight parameters obtained are given_in 0 (deg) 1991 213.5 98.4
Table 4. Thus, théminconfunction in MATLAB returns | o . Mass (kg) |  0.054 0.056 0.011
the values of optimized shaking forces and shaking for Iink3g d (m) 0.003 0.003 0.025
moments as well as design variables for the differegnt 6 (deg) 241.7 177.1 110.2
combinations of weighting factors. Using the conditions Mass (kg)| 0.059 0.008 0.166
of the equimomental point-mass system, the properties ofounterweight da(m) 0140 0138 0139

the balanced links and the counterweights attached with forlink 4 : : :
them can be found very easily. 0 (deg) 2058 194.1 124.1
. Mass (kg)| 0.002 0.013 0.089
o1s Tlsg:n(f:l) Cofgrr‘tl?r:‘li"g'ght d(m) 1716 | 0028 | 0.043
Y P : 6 (deg) 107.0 134.4 187.7

% # % + Case (3
o 04} t“; *5 £ B = This conversion of optimized point-masses to rigid
§ 0.08} **2; s % R body helps in finding the mass, mass center location and
y % 58 moment of inertia of the links and counterweights of the
3§ 008 L Y s balanced mechanism.
5 o 04W
) V. PARETO OPTIMAL SOLUTIONS USING GENETIC
e J—— ALGORITHM

Fig. 4. Variation of shaking force with time

Genetic algorithms are a class of probabilistic
optimization algorithms inspired by biological evolution
process. It uses the concept of natural genetics and natural
selection. The advantage with this algorithm is that
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multiple optimal solutions can be captured easily, thereby 4 Orginal Valus
reducing the effort to use the same algorithm many times. *

In multiobjective optimization problems, there exist a
number of optimum solutions which constitute a Pareto-
optimal front [30]. The problem of balancing of
Stephenson six bar mechanism is solved using
“gamultiob] function in Genetic Algorithmand Direct
Search Toolboxof MATLAB. This function finds the
minima using genetic algorithm and creates a set of Pareto
optima for a multiobjective minimization. One can specify [ Pareto front using GA

the initial population, bounds and linear constraints for ‘&..v. . . .
variables. The general difficulties faced by users are: (1) "I
requirement of large amount of calculation and (2) no 05k ]
unique and guaranteed optimum solution. The parallel

computers and longer runs of algorithm help in 0 - .

overcoming these difficulties [31]. For the problem ’ 00 Shaking Force = e
considered, the objective function is defined as

Case 2 (fmincon)
*

Shaking Moment

Fig. 6. Pareto optimal solutions set

Minimize z=[f n T
[T shrms M shyms] (19) VI. CONCLUSIONS

This objective function is taken as the fitness function The minimization of shaking force and shaking
for the genetic algorithm. The optimum design variablesnoment in complex planar mechanisms is presented here
obtained for case 2 in previous section is taken as thgs the single and multiobjective optimization problems.
initial population and the algorithm was run for 100 The proposed optimization method is efficient and simple
generations. For the given fitness function and the initiahs compared to the available analytical methods. The rigid
population, the genetic algorithm generates a curve havinghks of the mechanism are represented by the
multiple optimal solutions as shown in the Fig. 6. Thisequimomental point-masses and Newton-Euler equations
plot shows the trade off between two objective functionsgf motion are used to evaluate the shaking force and
i.e. the shaking force and shaking moment. Thus it iShaking moment. Putting constraints on point-masses
advantageous to use GA for finding multiple optimalparameters, the objective function including both the
solutlons without running the conventional algorithm shaking force and shaking moment is optimized using
many times. fminconand gamultiobjfunctions of MATLAB software.

The original and optimized values found using!n the shaking force balance problem, 64 percent
fminconfunction are also shown in Fig. 6. The GA resultsféduction in shaking force is obtained, while the reduction
are found better than the results obtained usin®f @bout 58 percent and 39 percent in shaking force and

conventional optimization algorithm as shown in thisShaking moment is found using the conventional
figure. The values of the shaking force and shakingPtimization algorithm. The simultaneous reduction in
moment corresponding to the best solution amon oth these dynamic quantities is improved using genetic

available pareto optimal solutions are given in Table 5algorithm that is about 84 percent and 70 percent,
The counterweight parameters for optimum desigr{espectwely. Pareto optimal solution set is also found in

variables are calculated using the equimomentay/hich each point represents the optimum value of the
conditions and are presented in Table 6. multiobjective function. This helps in choosing the best

solution amongst the available optimum solution as per

TABLE V. RESULTS USINGGENETIC ALGORITHM the requirement.
Shaking force | Shaking moment REFERENCES
inal val (N) (N-m)' [1] Berkof R S, Lowen G G, 1969, “A new method for completely
Original Value 0.045( 3.733 force balancing simple mechanisms”, Trans. of ASME, Journal of
Optimized 0.006¢ 1.126( Engineering for Industry 91(1) pp. 21-26.
Value (-84.0) (-69.8) [2] Tepper F R, Lowen G G, 1972, “General theorems concerning full
The values in parenthesis denote percentage increment/decrement over the force balancing of planar mechanisms by internal mass
corresponding values of the original mechanism redistribution”, Trans. of ASME, Journal of Engineering for
Industry 94 (3), pp. 789-796.
TABLE VI. OPTIMUM COUNTERWEIGHT PARAMETERS USINGGA [3] Walker M J, Oldham K, 1978, “A general theory of force balancing

using counterweights”, Mechanism and Machine Theory, Volume

Cou_nter- cwi |l ew2 !l cwz | cwa !l cws 13, pp. 175-185. -
weights [4] walker M J, Oldham K, 1979, “Extensions to the theory of
Mass (kg) 0.305 0.112 0.057 0.012 0.014 balancing ground forces in planar mechanisms”, Mechanism and

d(m) 0.075 0232 0.013 0334 0.271 Machine Theory, Volume 14, pp. 201-207. .
[5] Kochev IS, 1988, “A new general method for full force balancing
6 (deg) 200.5 250.1 136.( 144.7 21442 of planar mechanisms”, Mechanism and Machine Theory 23(6),
pp. 475-480.
[6] Arakelian V H, Smith M R, 1999, “Complete shaking force and
shaking moment balancing of mechanisms”, Mechanism and
Machine Theory 34, pp. 1141-1153.
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