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Abstract—This paper presents an optimization method to 
dynamically balance the complex multiloop planar 
mechanisms. The shaking force and shaking moment 
transmitted to the ground are balanced through optimization 
to improve the mechanism’s dynamic performance. The 
pareto optimal conditions are proposed considering the 
shaking force and shaking moment as two objective 
functions. First, the force balancing of the mechanism is 
obtained numerically. The shaking moment was found 
increased for a force balanced mechanism. To reduce both 
the shaking force and shaking moment, a multi-objective 
optimization problem is formulated and solved using 
conventional and genetic algorithm (GA) techniques. The 
genetic algorithm produces several optimum solutions 
(pareto optimal points) and the best solution can be chosen 
from this set of optimum solutions. The optimization method 
presented in this paper is general and can be applied to any 
mechanism whereas the analytical solutions already 
available are for the specific mechanisms. The effectiveness 
of the proposed method is shown considering a Stephenson 
six-bar mechanism. 

Keywords—Dynamic balancing; multiloop mechanism; 
shaking force; shaking moment; optimization; genetic 
algorithm 

I.  INTRODUCTION  

Any mechanism in motion, if not properly balanced, 
transmits forces and moments to its ground body known as 
shaking force and shaking moment. These forces and 
moments cause vibration and fatigue in the mechanism, 
and affect its performance. Several techniques have been 
proposed in the literature to reduce these shaking forces 
and shaking moments. The method for complete force 
balancing is based on the principle of making the total 
center of mass of the mechanism stationary [1]. The 
position equation of the total center of mass is written in 
the terms of the positions of the links of the mechanism 
first and then the time dependent terms are set equal to 
zero. These analytically derived conditions state the mass 
distribution of the links to eliminate the shaking force 
completely in simple mechanisms. This method was 
further extended by considering the force balance 
restrictions arising from the use of prismatic joints within a 
mechanism and minimum number of counterweight 
needed for full force balance in single and multi-degree of 
freedom planar mechanisms [2-4]. Using the same 
approach, an another method uses ordinary vectors to 

found the conditions of the full force balance as against the 
complex vectors used in previous methods [5].   

The complete force balancing alone is not sufficient as 
it will increase shaking moment and/or driving torques. 
The complete balancing of shaking force and shaking 
moment is not possible without adding duplicate 
mechanisms [6]. Use of the duplicate mechanism and/or 
adding links which neutralizes inertia is not recommended 
due to practical aspects and complexity. However, it could 
be used where it needed for the purpose as in slider-crank 
mechanism in multi-cylinder engines [7]. In a fully force-
balanced in-line planar four-bar mechanism, the root-
mean-square (RMS) value of the shaking moment was 
reduced through optimization in which the feasible limits 
of the link parameters can also be considered [8-10]. To 
minimize different dynamic quantities simultaneously, a 
trade-off method was developed in which the maximum 
values of the bearing force, the input moment, and the 
shaking moment of a constant input speed four-bar 
mechanism were simultaneously minimized, while 
obtaining a prescribed maximum value of the shaking 
force [11].  

The link masses can be optimally redistributed for 
simultaneous reduction in shaking force and shaking 
moment. These dynamic forces and moments depend on 
link masses, their locations of CGs and moment of 
inertias. Hence, the optimization problem formulation can 
be simplified if links are modelled as point-masses 
connected firmly [12]. A dynamically equivalent system 
of point-masses, referred to equimomental system, is used 
to represent the inertial properties of the mechanism [13]. 
After dynamically representing the links by the system of 
equimomental point-masses, the optimum distribution of 
the link masses can be found out for dynamically balance 
the mechanisms [14-17]. Using two and four point-mass 
models [18-21], dynamic quantities like driving torque, 
shaking force and shaking moment can be optimally 
balanced. In another method, the sets of three and seven 
equimomental point-masses for each link in planar and 
spatial mechanisms, respectively, were proposed [22]. The 
balancing problem of planar rigid-body mechanisms can 
also be formulated as a convex optimization problem [23-
25] to determine the optimal shape, position and mass of 
the counterweights. The evolutionary optimization 
techniques like particle swarm optimization (PSO) and 
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genetic algorithm (GA) are useful for the purpose of 
minimizing the multi-objective functions [26]. 

In this paper, the force balancing is achieved for a 
Stephenson six-bar mechanism by optimizing the point- 
mass parameters of the counterweights. Next, the multi-
objective optimization problem is formulated to 
simultaneously minimize the shaking force and shaking 
moment. The genetic algorithm is applied for this multi-
objective optimization problem produces a number of 
optimum solutions known as “pareto optimal points”. The 
best solution can be chosen from this set of optimum 
solutions and thus the global optimum solution of the 
problem can be found very quickly and efficiently. 

The structure of this paper is as follows. Section 2 
presents the equations of motion for rigid body and 
point-masses. The formulation of the optimization 
problem is shown in section 3. Section 4 presents a 
example of Stephenson six bar mechanism which is 
solved using the proposed method. Results are presented 
and pareto optimal solutions are found using genetic 
algorithm in section 5. Finally, conclusions are given in 
section 6. 

II. EQUIMOEMENTAL SYSTEM OF POINT-MASSES 

This section discusses the principle of equimomental 
system of point-masses and the dynamic equations of 
motion for the rigid body are rewritten in terms of the 
point-masses parameters.    

2.1 Equations of Motion of Rigid Body 

Consider a rigid body moving in X-Y plane. The frame Xi-
Yi is fixed to the body at Oi. The link length is defined by 
the distance from the joints, Oi to Oi+1. A body fixed 
ground Xi-Yi is defined such that origin is at Oi and axis Xi 

is aligned from Oi to Oi+1. The location of the mass center, 
Ci, is defined by polar coordinates, di and θi, as shown in 
Fig. 1 where the bold-faced ai, and di denote the vectors. 
For dynamic analysis, the Newton-Euler (NE) equations 
of motion for the ith rigid link in planar motion with 
respect to the origin, Oi, are written as [27]: 

iiiii wtCtM =+ɺ
     (1) 

 

Fig. 1. Planar rigid body 

In (1), it , itɺ , and iw , are 3-dimesional vectors, defined 
as the twist, twist-rate, and wrench of the ith link with 
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In (2), iω and iv are the scalar angular velocity about the 
axis perpendicular to the plane of motion, and the 2-
dimensinal vector of linear velocity of the origin of the ith 
link, Oi, respectively. Accordingly, iωɺ and ivɺ are the time 

derivatives of iω and iv , respectively. Also, the scalar,in , 
and the 2-dimesional vector, if , are the resultant moment 
about Oi and the resultant force at Oi, respectively. The 
3×3 matrices, M i and Ci are defined as: 
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where 1 and O are the 2×2 identity and zero matrices, 
respectively, and 0 is the 2-dimesional vector of zeros, 
whereas the 2×2 matrix E is defined as: 
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2.2 Modified Equations of Motion for Equimomental 
System of Point-masses 

The links of a mechanism can be modeled as rigid bodies 
for kinematic and dynamic analysis. The mass and 
moment of inertias of the links govern shaking force and 
shaking moment transmitted to the ground. The 
determination and optimization of moment of inertias is 
useful in minimizing the shaking force and shaking 
moment. This problem can be simplified by modelling the 
rigid links as point-masses connected firmly. The essential 
requirements for the dynamic equivalence between rigid 
link and the system of point-masses are (1) same mass, (2) 
same center of mass and (3) same inertia tensor with 
respect to same coordinate frame. Such dynamically 
equivalent system is called equimomental system of point-
masses [22]. As shown in Fig. 2, a set of dynamically 
equivalent system of rigidly connected k point-masses, 
mik, located at l ik, θik can be found using the equimomental 
conditions.  

The conditions used to find the equivalent point-
masses for a rigid body are: 

iik m
k
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Fig. 2. Equimomental system of point-masses of the ith link 

where mi and I i are the mass of the ith link and its mass 
moment of inertia about Oi. The subscripts i and k are 
used to represent the link number and the point-mass, 
respectively. It is important to note here that all the 
vectors are represented in the fixed inertial frame, OXY. 
The NE equations of motion, (1), are now rewritten for 
the equimomental system of point-masses of the ith link. 
Equation (1) does not change except the elements of 
matrices, M i and Ci, which are given as: 

;
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where C and S are abbreviations for cosine and sine 
functions, respectively. There are total 3k parameters, ikm

, ikθ , ikl , for k=1, 2,…,k if k point-masses are defined for 
the ith link. For a mechanism of n moving links, there will 
be total 3kn point-mass parameters. All or some of these 
can be taken as the design variables. 

III.  FORMULATION OF OPTIMIZATION PROBLEM 

For balancing the mechanism using counterweights, 
the point-mass parameters of the counterweights are 
considered as the design variables in the optimization 
problem. The matrices, M i and Ci, defined in (9) can be 
modified for the counterweight addition as: 

;
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The elements of this matrix M i are: 
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In (10), the subscripts o and c are used for the original 
links and the counterweights, respectively. Equation (1) 
with these modified terms is used to evaluate the shaking 
force and shaking moment transmitted to the ground. 

3.1 Design Variables 

The counterweights added to a mechanism having n 
moving links, can be represented by a system of k 
equimomental point–masses per counterweight per link. 
The 3k-vector of design variables for counterweight for 
ith link is defined as: 

[ ]T2221111 ...DV ikikikiiiiii lmlmlm θθθ=   (11) 

Similarly, the 3nk-vector of design variables, DV, for the 
mechanism can be defined as: 
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3.2 Objective Function and Constraints 

The shaking force is defined as the vector summation 
of all the inertia forces of the mechanism while the 
summation of moments of the inertia forces and the inertia 
couples about a joint is defined as the shaking moment 
about that joint [8, 19]. As shaking force and shaking 
moment are of different units, they are made 
dimensionless using the parameters of the first link to 
define the combined objective for the optimization 
problem. Considering the RMS values of the shaking 
force and shaking moment, the optimality criterion for 
simultaneous minimization of them is proposed here as 
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here w1 and w2 are used as the weighting factors for giving 
weightage to the shaking force and shaking moment as per 
the requirements in the different cases. The values of 
these weighting factors vary between 0 and 1. The 
parameters o

im and o
ia are representing the original mass 

and length of the ith link, respectively.   

IV.  EXAMPLE: STEPHENSON SIX -BAR MECHANISM 

The proposed method is applied for the balancing of 
Stephenson six bar mechanism as shown in Fig. 3.  
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Fig. 3. Stephenson six-bar mechanism detached from the frame

Link #1 and #3 are tertiary links and links #2, #4, #5 
are binary links whereas link #0 is fixed. These links are 
connected by the revolute joints. For the considered 
mechanism, the shaking force and shaking moment at and 
about the joint, 3, between ground and third link are given 
as: 

)( 0301 fff +−=sh and ) x ( 30301
e

sh nnnn +++−= 010 fa (15) 

In (15), 0301  and ff are the reaction forces of the ground on 

the links 1 and 3, respectively. Similarly,01n and 03n are 

the reactions of resultant inertia couple about the joint 1 
and 3, respectively while en3  is the driving torque applied 
at joint 3. As all joints in the mechanism are revolute, 

00301 == nn .Considering three point-masses per link, 
design variables are considered as: 

T
333222111 ][DV iiiiiiiii θlmθlmθlm= for i =1,2,…,5   (16) 

Now, by putting suitable limits on the link masses and 
inertias, the optimization problem to reduce shaking force 
and shaking moment for this mechanism is formulated as:   
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The parameters for the unbalanced Stephenson six bar 
mechanism are taken from [1] and given in Table 1. The 
kinematic simulation was carried out using the 
MotionView and MotionSolve of Altair HyperWorks 11.0 
software [28]. For given example, link 3 rotates with a 
constant speed of 2π radians/second. The “fmincon” 
function in Optimization Toolbox of MATLAB [29], was 
used to solve this non-linear optimization problem 
subjected to constraints as defined in (17) and (18). This 
function finds a constrained minimum of a scalar function 

of several variables starting at an initial estimate. As 
explained in section 3, the values of weighting factors, w1 
and w2, may vary depending on the particular requirement. 
For the problem considered, the standard and optimized 
values of the shaking force and shaking moment for 
different combinations of weighting factor values are 
shown in Table 2. The corresponding design vectors are 
given in Table 3.  

TABLE I.  PARAMETERS OF UNBALANCED STEPHENSON SIX -BAR 
MECHANISM [1] 

Link i 1 2 3 4 5 
ai (m) 0.056 0.121 0.003 0.140 0.044 
bi (m) 0.058 --- 0.003 0.152 --- 
γi  (deg) 6.0 --- 16.0 40.4 --- 
θi  (deg) 3.0 0.0 5.0 19.0 0.0 
di (m) 0.029 0.063 0.003 0.084 0.020 
mi (kg) 0.061 0.083 0.076 0.173 0.040 

TABLE II.  RMS VALUES OF SHAKING FORCE AND SHAKING 
MOMENT  

 Value 
of 

w1,w2 

Shaking force 
(N) 

Shaking 
moment# 

(N-m) 
Original Value  0.0450 3.7332 
1. Only shaking 
force balance 

1.0,0.0 0.0164 
(-63.9) 

10.8610 
(+190.1) 

2. Both shaking 
force and 
shaking moment 
balance 

0.5,0.5 0.0192 
(-57.7) 

2.2651 
(-39.3 ) 

3. Only shaking 
moment balance 

0.0,1.0 0.1031 
(+127.1) 

2.2516 
(-39.7) 

#The shaking moment is taken about the joint, 3; 
The values in parenthesis denote percentage increment/decrement over the 
corresponding values of the original mechanism 
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TABLE III.  DESIGN VECTORS FOR BALANCED STEPHENSON SIX-BAR MECHANISM 

Case Design vector 
Case (1) 

w1=1.0;w2=0.0 
0.0309  4.0270  1.7062  0.1197  3.9740  1.7338  0.1537  3.8813  4.8418  0.0365  2.9959  1.7388   -0.0102  
3.1573  0.9680  0.0277  3.2215  5.1332 -0.0318  4.9628  1.9128  0.0319  4.9519  1.9128  0.0001  4.9174  
5.0231  0.0603  3.4509  1.7738  -0.0503  3.3583  1.8414  0.0123  3.4443  4.5739  0.0349  2.1382  1.9216 -
0.0043  2.4381  2.0465  0.0286  2.2983  4.9177 

Case (2) 
w1=0.5;w2=0.5 

0.4806  1.5366  1.6328 -0.3290  1.9244  1.5450  0.1526  0.7439  5.1208 -0.0199  0.9701  1.9528  0.0582  
0.7075  2.0403  0.0177  1.2373  5.2512  -0.0144  4.3380  2.5218  0.0141  3.5602  1.9263  0.0136  2.5912  
3.4444  -1.1293 6.6533  0.0172  0.8427  6.2160  0.2306   0.3973  6.6235  5.8622  0.0008  1.5700  2.2340  -
0.0004  2.1455  2.0325  0.0077  0.1109  3.7604 

Case (3) 
w1=0.0;w2=1.0 

-0.4071  1.1193  1.1352  0.0106  2.5043 -0.6537  0.4743  0.9671  7.4688  0.0035  3.5774  1.7455  0.0020  
3.5776  1.7470  0.0056   3.4643  4.8851  0.0974   0.8426  3.6560  0.0826  2.3066  2.2343  -0.0911  2.3636  
2.6041  0.7422  1.2073  0.0586  -1.0356  2.6574  1.1808  0.6861  3.5710  7.7891  -0.1317-0.1939  1.7103 
0.2981  -0.1594  1.9258  0.0001 -1.5667 4.7663 

For only the shaking force balancing, weighting factor 
values, w1 and w2, are taken as 1 and 0, respectively in 
case (1). This results in 63.87 percent reduction in the 
shaking force but the shaking moment value in increased 
by 190.93 percent. This shows that force balancing 
increases the shaking moment in this case. In case (3), the 
weighting factor values, w1 and w2, are taken as 0 and 1, 
respectively for only the shaking moment balancing. As 
shown in Table 2, it results in 39 percent reduction in the 
shaking moment value while the shaking force is 
increased by 127 percent. These two cases support the fact 
that the reduction in one dynamic quantity increases the 
other. Thus a trade-off is necessary to reduce both the 
shaking force and shaking moment and both the quantities 
are assigned equal weighting factor value, i.e., 0.5 in the 
objective function (Case 2). The result shows 57.7 and 39 
percent reduction in the values of the shaking force and 
shaking moment, respectively. The variations in the 
values of shaking force and shaking moment over entire 
cycle are shown in Fig. 4 and Fig. 5. 

The point-mass parameters of the counterweights are 
obtained as the optimum design variables. Using the 
equimomental conditions presented in (5)-(8), these point-
masses can be converted into the rigid body. The 
optimized counterweight parameters obtained are given in 
Table 4. Thus, the fmincon function in MATLAB returns 
the values of optimized shaking forces and shaking 
moments as well as design variables for the different 
combinations of weighting factors. Using the conditions 
of the equimomental point-mass system, the properties of 
the balanced links and the counterweights attached with 
them can be found very easily. 

 
Fig. 4. Variation of shaking force with time 

 

Fig. 5. Variation of shaking moment with time 

TABLE IV.  OPTIMUM COUNTERWEIGHT PARAMETERS 

  Case 1 Case 2 Case 3 

Counterweight 
for link 1 

Mass (kg) 0.304 0.304 0.078 

d (m) 0.056 0.056 0.056 

θ (deg) 176.3 180.1 105.4 

Counterweight 
for link 2 

Mass (kg) 0.022 0.111 0.393 

d (m) 0.126 0.121 0.123 

θ (deg) 199.1 213.5 98.4 

Counterweight 
for link 3 

Mass (kg) 0.054 0.056 0.011 

d (m) 0.003 0.003 0.025 

θ (deg) 241.7 177.1 110.2 

Counterweight 
for link 4 

Mass (kg) 0.059 0.008 0.166 

d (m) 0.140 0.138 0.139 

θ (deg) 205.8 194.1 124.1 

Counterweight 
for link 5 

Mass (kg) 0.002 0.013 0.089 

d (m) 1.716 0.028 0.043 

θ (deg) 107.0 134.4 187.7 
  

This conversion of optimized point-masses to rigid 
body helps in finding the mass, mass center location and 
moment of inertia of the links and counterweights of the 
balanced mechanism.  

V. PARETO OPTIMAL SOLUTIONS USING GENETIC 

ALGORITHM 

Genetic algorithms are a class of probabilistic 
optimization algorithms inspired by biological evolution 
process. It uses the concept of natural genetics and natural 
selection. The advantage with this algorithm is that 
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multiple optimal solutions can be captured easily, thereby 
reducing the effort to use the same algorithm many times. 
In multiobjective optimization problems, there exist a 
number of optimum solutions which constitute a Pareto-
optimal front [30]. The problem of balancing of 
Stephenson six bar mechanism is solved using 
“gamultiobj” function in Genetic Algorithm and Direct 
Search Toolbox of MATLAB . This function finds the 
minima using genetic algorithm and creates a set of Pareto 
optima for a multiobjective minimization. One can specify 
the initial population, bounds and linear constraints for 
variables. The general difficulties faced by users are:  (1) 
requirement of large amount of calculation and (2) no 
unique and guaranteed optimum solution. The parallel 
computers and longer runs of algorithm help in 
overcoming these difficulties [31]. For the problem 
considered, the objective function is defined as 

T
,, ],[ rmsshrmssh nfzMinimize =   (19) 

This objective function is taken as the fitness function 
for the genetic algorithm. The optimum design variables 
obtained for case 2 in previous section is taken as the 
initial population and the algorithm was run for 100 
generations. For the given fitness function and the initial 
population, the genetic algorithm generates a curve having 
multiple optimal solutions as shown in the Fig. 6. This 
plot shows the trade off between two objective functions, 
i.e. the shaking force and shaking moment. Thus it is 
advantageous to use GA for finding multiple optimal 
solutions without running the conventional algorithm 
many times. 

The original and optimized values found using 
fmincon function are also shown in Fig. 6. The GA results 
are found better than the results obtained using 
conventional optimization algorithm as shown in this 
figure. The values of the shaking force and shaking 
moment corresponding to the best solution among 
available pareto optimal solutions are given in Table 5. 
The counterweight parameters for optimum design 
variables are calculated using the equimomental 
conditions and are presented in Table 6. 

TABLE V.  RESULTS USING GENETIC ALGORITHM 

 Shaking force 
(N) 

Shaking moment 
(N-m) 

Original Value 0.0450 3.7332 

Optimized 
Value 

0.0069 
 (-84.0) 

1.1260 
 (-69.8) 

The values in parenthesis denote percentage increment/decrement over the 
corresponding values of the original mechanism 

 
TABLE VI.  OPTIMUM COUNTERWEIGHT PARAMETERS USING GA 

Counter-
weights  CW 1 CW 2 CW 3 CW 4 CW 5 

Mass (kg) 0.305 0.112 0.057 0.012 0.014 

d (m) 0.075 0.232 0.013 0.334 0.221 

θ (deg) 200.5 250.1 136.0 144.7 214.2 
 

 

 
Fig. 6. Pareto optimal solutions set 

VI.  CONCLUSIONS 

The minimization of shaking force and shaking 
moment in complex planar mechanisms is presented here 
as the single and multiobjective optimization problems. 
The proposed optimization method is efficient and simple 
as compared to the available analytical methods. The rigid 
links of the mechanism are represented by the 
equimomental point-masses and Newton-Euler equations 
of motion are used to evaluate the shaking force and 
shaking moment. Putting constraints on point-masses 
parameters, the objective function including both the 
shaking force and shaking moment is optimized using 
fmincon and gamultiobj functions of MATLAB software. 
In the shaking force balance problem, 64 percent 
reduction in shaking force is obtained, while the reduction 
of about 58 percent and 39 percent in shaking force and 
shaking moment is found using the conventional 
optimization algorithm. The simultaneous reduction in 
both these dynamic quantities is improved using genetic 
algorithm that is about 84 percent and 70 percent, 
respectively. Pareto optimal solution set is also found in 
which each point represents the optimum value of the 
multiobjective function. This helps in choosing the best 
solution amongst the available optimum solution as per 
the requirement.  
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