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Abstract—Human motion prediction through 
computational simulation can serve as a tool to anticipate the 
result of surgery or to help in the design of 
prosthetic/orthotic devices. The latter is the motivation in a 
project being run by the authors, devoted to the design of an 
active stance-control knee-ankle-foot orthosis (SCKAFO) as 
an assistive device for the gait of incomplete spinal cord 
injured (SCI) subjects. Optimization is a well-suited 
technique to tackle the human motion prediction problem, 
and several approaches have been proposed in the literature. 
However, no matter which is the used approach, the 
implementation of these methods represents a great 
challenge in terms of both convergence and efficiency. 
Therefore, the authors intend to firstly address the analysis 
of a certain measured motion through forward dynamics, 
which can be considered as an intermediate step towards the 
prediction problem, since it requires dynamical consistency 
too, but does not suffer from the same high amount of 
uncertainty. Consequently, a systematic study of the 
different alternatives to obtain, through forward dynamics, 
the drive efforts at joint level that produce a certain known 
motion is started in this paper. Three model-based control 
methods have been implemented for the gait of a healthy 
subject, and their performances have been compared. 

Keywords—gait analysis; forward dynamics; motion 
simulation; model-based control 

I.  INTRODUCTION 

Many spinal cord injured subjects with no ability to 
control their knee and ankle joints can walk with the help 
of assistive devices, such as crutches and orthoses. The 
knee–ankle–foot orthoses (KAFO) commonly used by 
these patients lock the knee joint flexion–extension in 
order to bear their weight during stance. The problem of 
locking the knee is that the hip must be lifted in order to 
leave enough clearance for the leg to complete the swing, 
thus leading to an energetically inefficient gait. There are 
several orthoses and knee articulation modules in the 
market which allow to unlock the knee flexion during leg 
swing to improve gait. However, they do not provide the 
necessary torque to perform the flexion–extension motion, 
and in many cases they require the patient to lock/unlock 
the knee manually at each step, by means of a remote 
control device. The development of an active KAFO [1, 2] 
with an actively controlled knee joint can greatly reduce 
the metabolic cost, which would encourage the patients to 

choose walking instead of using wheelchairs, thus 
improving their rehabilitation. 

 
Fig. 1. Authors’ ongoing project: development of active SCKAFO. 

The authors’ ongoing project is devoted to the 
development of such an active stance-control knee-ankle-
foot orthosis (SCKAFO) [3], shown in Fig. 1. The gait of 
patients wearing their passive orthoses is analyzed by 
means of an experimental setup for measuring gait data, 
which is fed into a multibody computational model that 
calculates the joint motor torques through inverse 
dynamics [4]. The obtained kinematic and kinetic 
information is useful for the design of the SCKAFO 
controllers. However, a most powerful tool would be that 
capable of answering the following question: how would 
this patient walk if he wore the SCKAFO we have 
developed with a certain design of the controller? Or, in 
other words, a tool capable of providing the patient’s 
motion prediction. With such a tool, the SCKAFO 
controllers could be tuned once and again until a 
satisfactory behavior of the patient’s computational model 
would be achieved in the simulation. 

The problem of human motion prediction has been 
addressed in the literature, and is currently a topic of 
intensive research. Optimization has been the preferred 
technique, where the cost function is usually based on 
physiological criteria. Three main basic approaches have 
been used in the literature [5]: 

a) To consider the parameters defining the motion as 
the design variables, obtaining the drive efforts that 

353



 
Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013 

 
 

originate the corresponding motion through inverse 
dynamics [6]. 

b) To consider the parameters defining the drive efforts 
as the design variables, obtaining the motion that results 
from the applied efforts through forward dynamics [7]. 

c) To consider both the parameters defining the motion 
and the drive efforts as the design variables, and including 
the relations among them (equations of motion) as 
constraints of the optimization problem [8]. 

However, no matter which is the used approach, the 
implementation of these methods represents a great 
challenge in terms of both convergence and efficiency. 

On the other hand, the analysis of a real captured 
motion can be addressed by means of either inverse or 
forward dynamics [9]. While inverse dynamics looks at 
each discretized instant of time separately, forward 
dynamics implies by nature the dynamically consistent 
solution over the full period of motion, which is in better 
agreement with the operation rules of the musculoskeletal 
system. Therefore, the analysis of a certain measured 
motion through forward dynamics can be considered as an 
intermediate step towards the prediction problem, since it 
requires dynamical consistency too, but does not suffer 
from the same high amount of uncertainty. 

Consequently, a systematic study of the different 
alternatives to obtain, through forward dynamics, the drive 
efforts at joint level (not muscular yet) that produce a 
certain known motion is started in this paper. The study 
focuses on gait, since this is the relevant motion for the 
authors’ ongoing project, as explained before. The 
literature review showed that both control and optimization 
approaches have been used. Here, three model-based 
control methods have been implemented for a healthy 
subject and their performances have been compared. 

The remaining of the paper is organized as follows. 
Section 2 describes the experiment, the multibody model 
of the healthy subject and the signal processing technique 
applied to the captured data. Section 3 gathers the 
multibody dynamics formulation. Section 4 explains the 

three methods that have been used to perform the forward 
dynamics analysis, shows the obtained results, and 
proceeds to their discussion. Section 5 draws the 
conclusions of the work and suggests the following 
research to be addressed. 

II. EXPERIMENT AND MODEL 

The subject selected to perform the experiment is a 
healthy adult male, 34 years old, mass 85 kg and height 
1.82 m. He walks on a walkway featuring two embedded 
force plates (AMTI, AccuGait sampling at 100 Hz). The 
motion is captured by 12 optical infrared cameras (Natural 
Point, OptiTrack FLEX:V100 also sampling at 100 Hz) 
that compute the position of 37 optical markers. 

The human body is modeled as a 3D multibody system 
formed by rigid bodies, as shown in Fig. 2. It consists of 
18 anatomical segments: two hindfeet, two forefeet, two 
shanks, two thighs, pelvis, torso, neck, head, two arms, two 
forearms and two hands. The segments are linked by ideal 
spherical joints, thus defining a model with 57 degrees of 
freedom. The global axes are defined as follows: x axis in 
the antero–posterior direction, y axis in the medio–lateral 
direction, and z axis in the vertical direction. The 
computational model is defined with 228 mixed (natural + 
angular) coordinates. The subset of natural coordinates 
comprises the three Cartesian coordinates of 22 points, and 
the three Cartesian components of 36 unit vectors, thus 
making a total of 174 variables. The points correspond to 
the positions of all the spherical joints (white dots in Fig. 
2), along with points of the five distal segments -head, 
hands and forefeet- (black dots in Fig. 2). Each one of the 
18 bodies is defined by its proximal and distal points, plus 
two orthogonal unit vectors aligned at the antero–posterior 
and medio–lateral directions, respectively, when the model 
is in a standing posture. The remaining 54 variables are the 
18 sets of 3 angles that define the orientation of each body 
with respect to the inertial frame. 

The geometric and inertial parameters of the model are 
obtained, for the lower limbs, by applying correlation 
equations from a reduced set of measurements taken on the 
subject, following the procedures described in [10]. For the  
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Fig. 2. (Color online) Human multibody model. 
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upper part of the body, data from standard tables [9] is 
scaled according to the mass and height of the subject. In 
order to adjust the total mass of the subject, a second 
scaling is applied to the inertial parameters of the upper 
part of the body. 

The kinematic information of the motion is obtained 
from the trajectories of the 37 markers attached to the 
subject’s body (red dots in Fig. 2), which are captured at 
100 Hz frequency by means of the 12 infrared cameras. 
Position data are filtered using an algorithm based on 
Singular Spectrum Analysis (SSA) and the natural 
coordinates of the model are calculated using algebraic 
relations. Afterwards, a minimization procedure ensures 
the kinematic consistency of the natural coordinates. From 
that information, the histories of a set of 57 independent 
coordinates -as many as the system degrees of freedom- 
formed by the Cartesian coordinates of the position vector 
of the lumbar joint and the 18 x 3 angles that define the 
absolute orientation of each body, are kinematically 
obtained and approximated by using B-spline curves. 
Analytical differentiation yields the corresponding velocity 
and acceleration histories. More detail about the treatment 
of the captured data can be found in [4]. 

III.  MULTIBODY FORMULATION 

The dynamics of a multibody system can be described 
by the constrained Lagrangian equations, 

 
T+ =

=
qMq Φ λ Q

Φ 0

ɺɺ
 (1)  

which constitute a set of differential-algebraic equations 
(DAE), where M  is the positive semidefinite mass matrix, 
qɺɺ  the accelerations vector, Φ  the constraints vector, qΦΦΦΦ  

the Jacobian matrix of the constraints, λ  the Lagrange 
multipliers vector, and Q the forces vector. 

In this work, the formulation in minimum number of 
coordinates proposed in [11] and called matrix-R 
formulation has been used. The starting point is to 
establish the following relation between dependent qɺ  and 
independent zɺ  velocities: 

 =q Rzɺ ɺ  (2)  

In the present case, vector q is formed by all the 228 
problem variables, while vector z is formed by the subset 
of 57 independent coordinates (Cartesian coordinates of 
the position vector of the lumbar joint and orientation 
angles of all the anatomical segments) already mentioned 
in the previous section. 

Relation (2) can always be found: each column of 
matrix R is nothing but the system velocities qɺ  when a 
unit value is given to one of the independent velocities zɺ  
and the others are set to zero. The system velocity analysis 
can be carried out by means of the time derivative of the 
constraints equation, =qΦ q 0ɺ . Differentiating (2) with 

respect to time yields, 

 = +q Rz Rzɺɺɺ ɺɺ ɺ  (3)  

where vector Rzɺ ɺ  can be obtained by means of a system 
acceleration analysis with all the independent accelerations 
zɺɺ  set to zero. The system acceleration analysis can be 
carried out through the second time derivative of the 
constraints equation, = −q qΦ q Φ qɺɺɺ ɺ . 

Now, substituting (3) into (1), premultiplying by TR , 
and taking into account that =qΦ R 0 , the following 

system of ordinary differential equations (ODE) is 
achieved,� 

 ( )T T= −R MRz R Q MRzɺɺɺ ɺ  (4)  

or, in a more compact form, 

 =Mz Qɺɺ  (5)  

where M  and Q  are, respectively, the mass matrix and 
force vector projected to the minimum set of coordinates z. 

Therefore, the result is that the DAE system (1) 
expressed in dependent coordinates q has been converted 
into the ODE system (5) expressed in independent 
coordinates z. 

In the present work, the ODE system (5) has been 
numerically integrated in time by means of the single step, 
fixed time step, trapezoidal rule. 

IV.  TESTS AND DISCUSSION 

As explained in the Introduction, a systematic study of 
the different alternatives to obtain, through forward 
dynamics, the drive efforts at joint level that produce a 
certain known gait motion is started in this paper. 

Initially, the gait of the healthy subject described at the 
beginning of Section 2 is captured with the infrared 
cameras, and the corresponding ground contact forces are 
measured through the forces plates. An inverse dynamics 
analysis (IDA) is then carried out to determine the 
reactions and joint torques that produced the motion. The 
measurements coming from the force plates are only used 
to overcome the reaction indeterminacy arising during the 
double-support phase: the measured reactions are corrected 
so that their force and moment resultants are coincident 
with those provided by the IDA, the discrepancy being 
split proportionally to their absolute values. 

To provide a certain validation, Fig. 3 shows the net 
torques in the lower limb joints (sagittal plane) obtained 
from the IDA, and compares them with the average torque 
(dashed line) bounded by the standard deviation (grey 
area) presented by Winter in [12]. The recorded motion 
contains more than one cycle. It starts at the heel strike of 
the right foot (0% of gait cycle), includes the next heel 
strike of the same foot (100%), and finishes at the toe-off 
of the left foot belonging to the next cycle (approx. 116%). 

In what follows, the pelvis is considered as the base 
body of the kinematic chain and, then, the reactions are the 
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Fig. 3. (Color online) Comparison with Winter’s results. 

force and moment acting on the pelvis, while the drive 
torques are the absolute torques undergone by the 
remaining anatomical segments. Such results can be 
transformed, whenever necessary, to the reaction in the 
supporting foot (or to the reactions in the two supporting 
feet during double support, as explained above) and the 
actual drive torques at the joints. 

Once the IDA has been carried out and the reaction 
force and moment have been determined along with the 
drive torques, the objective is to obtain the same reaction 
and drive torques by means of a forward dynamics analysis 
(FDA). For this purpose, the three following model-based 
control methods have been implemented: 

a) The first method consists of using as inputs of the 
FDA the reaction and torques obtained from the IDA. 
Ideally, the solution should be coincident with the original 
captured motion but, as pointed out in the literature, it is 
not due to the unstable character of human gait and to the 
integration errors. Initially, a time step of 10 ms was 
adopted for the FDA, but the simulation was completely 
unstable. Then, the time-step size was reduced to 1 ms. 

Since the IDA had been performed at 100 Hz, additional 
points had to be generated, which was straightforward as 
B-splines had been adjusted to the adquired motion, as 
explained in Section 2. Using the time step of 1 ms, the 
FDA was able to reproduce the motion until the 90% of the 
gait cycle and then drifted away, as illustrated in Fig. 4, 
where the ankle, knee and hip angles in the sagittal plane 
are plotted for both legs. 

b) The second method consists of using as inputs of the 
FDA the reaction and torques obtained from the IDA (as in 
the first method), but includes a proportional-derivative 
(PD) control of reaction and torques so as to follow the 
measured motion and avoid instabilities. The reference 
signals of the controllers are the measured time evolution 
of the independent coordinates z, that is, the position of the 
lumbar joint and the three angles defining the absolute 
orientation of each segment. The error and the error time 
derivative of each controller have the following 
expressions: 

 ref ref   ,      ,   1,...,57i i i i i ie z z e z z i= − = − =ɺ ɺ ɺ  (6)  
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Fig. 4. (Color online) IDA results as inputs: FDA drifts away at 90% of gait cycle. 

Therefore, an actuator associated to each independent 
coordinate is included for the FDA, its generalized force 
being, 

 P D    ,   1,...,57i i i i if k e k e i= + =ɺ  (7)  

The gains Pik  and Dik  for each actuator were adjusted 
by trial and error, and the results were shown to be quite 
sensitive to the values of the gains. Table 1 gathers the 
selected gain values. It can be seen that all the gains have 
been expressed as functions of two basic parameters, pK  

and dK . Moreover, the gains are proportional to the mass 

of the corresponding link, jm . 

As it happened for the first method, if a time step of 10 
ms is used the simulation is completely unstable. However, 
using again a time step of 1 ms, the FDA was able to 
reproduce the entire motion. Fig. 5 shows the difference 
between the motion yielded by the FDA and the measured 
motion. The upper plot is devoted to the three Cartesian 
coordinates of the position vector of the lumbar joint 
(position errors are in the order of 710−  m), while the 

bottom plots refer to the thigh, shank, hindfoot and 
forefoot of the left and right legs, respectively (angular 
errors are in the order of 510−  rad). Analogously, Fig. 6 
shows the differences at force/torque level. In this case, 
errors in the reaction force at the lumbar joint are in the 
order of 210−  N, while errors in the torques of the lower 
limbs are in the order of 410−  Nm. 

TABLE I.  SELECTED GAINS FOR THE PD CONTROLLERS 

p d350   ;   1K K= =  Pi

j

k
m  Di

j

k
m  

Lumbar joint force 
x pK  dK  

y p6K  dK  

z p8K  d8K  

Segment torques p0.009K  d0.003K  

c) The third method consists of using only, as input of 
the FDA, the actuation provided by the so-called computed 
torque control (CTC) [13]. The reference signals of the 
controllers are the same as those already explained for the 
previous method. In this case, the equations of motion (5) 
can be written as, 

357



 
Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013 

 
 

−5

0

5

Lumbar joint

Gait cycle [%]

200 40 60 80 100

  10 −7

[m
]

x

y

z

×

[r
a
d

]

× 10−5

Gait cycle [%]

× 10−5

Gait cycle [%]

[r
a
d

]

Left leg 

 

 

200 40 60 80 100

 −4

−2

0

2

Right leg 

 

 

200 40 60 80 100

 
−4

−2

0

2

4

Thigh Hindfoot
ForefootShank

Thigh Hindfoot
ForefootShank

 
Fig. 5. (Color online) Differences between FDA and IDA results at position level (2nd method). 
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Fig. 6. (Color online) Differences between FDA and IDA results at force/torque level (2nd method). 

 CTC= +Mz Q Qɺɺ  (8)  

where the vector of generalized forces due to the 
controllers takes the form, 

 ( )ref
CTC d p= + + −Q M z c e c e Qɺɺɺ  (9)  

being pc  and dc  diagonal matrices containing the gains 

associated to each independent coordinate iz , e and eɺ  the 
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Fig. 7. (Color online) Differences between FDA and IDA results at position level (3rd method). 
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Fig. 8. (Color online) Differences between FDA and IDA results at force/torque level (3rd method). 

vectors of error and error time derivative, respectively, as 
defined in (6), and refzɺɺ  the accelerations corresponding to 
the measured motion. As explained in [13], the error 
dynamics of this control method is represented by a system 
of second order differential equations, having pc  and dc  

as coefficients of the proportional and first derivative 

terms, respectively. Therefore, if critical damping is 
desired, the following relation between the gains should be 
imposed, 

 d p2i i=c c  (10)  
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which means that only one of the two sets of coefficients 
must be adjusted. In this work, the pc  gains were 

considered as independent, while the dc  gains were 
obtained by application of (10). 

Unlike the previous method, which required the 
particular tuning of each gain (as shown in Table 1), the 
CTC method allows giving the same value to all the pic  

elements, since each of them is affected by the 
corresponding generalized mass, as indicated in (9). 
Moreover, the method showed to be extremely robust, 
keeping the simulation stable for the wide range of gain 
values tested (pic  was set to values of different magnitude 

orders, ranging from 110−  to 510 ). 

This time the controller was able to complete the FDA 
analysis with a time step of 10 ms, which further confirms 
the robustness of the method. The obtained results were 
quite accurate at position level, but showed relevant errors 
at force/torque level, i.e. the reaction and torques yielded 
by the FDA were not in good agreement with those 
provided by the IDA. 

Using a time step of 1 ms, the FDA was carried out for 
the different values of pic  indicated above. It was 

observed that the accuracy of the CTC method increases 
linearly with the value of pic  (some noise appeared in the 

results for values of pic  greater than 310 ). Setting 
3

p 10i =c , Fig. 7 shows the difference between the motion 

yielded by the FDA and the measured motion, while Fig. 8 
shows the differences at force/torque level. The format of 
these figures is the same as that followed for the previous 
method in order to streamline comparison. 

As it can be seen in the figures, position errors are in 
the order of 610−  m and angular errors are in the order of 

410−  rad, while errors in the reaction force at the lumbar 
joint are in the order of 1 N and errors in the torques of the 
lower limbs are in the order of 110−  Nm. Although this 
accuracy is lower than that provided by the previous 
method, the accuracy of the CTC method can be increased 
by simply increasing the value of pic , as pointed out 

before. 

V. CONCLUSIONS AND FUTURE RESEARCH 

Three methods have been tested in this paper to obtain, 
through forward dynamics, the drive efforts at joint level 
that produce a certain known gait motion. The first one 
consists of using as inputs of the forward dynamics 
analysis (FDA) the reaction and torques obtained from a 
previous inverse dynamics analysis (IDA). This method is 
not able to reproduce the motion due to the integration 
errors and the unstable character of human gait, which 
make the simulation drift. The second method adds a PD 
controller to the IDA reaction and torques, allowing to 
simulate the complete motion after a careful tuning of the 
PD gains. The last method does not require the IDA 
results, but implements a computed torque controller 

instead. In this case, the parameters to be tuned are reduced 
to one single gain, and the method is robust with respect to 
both the gain and the time step values, providing higher 
accuracy for increasing gain values. Therefore, it is 
perceived as an excellent method for the pursued objective. 

The next steps in this research, which has the final 
objective of developing motion prediction methods, will be 
oriented in two directions. On the one hand, control-based 
methods should be tested for the case of including foot-
ground contact models in the simulation. On the other 
hand, optimization-based methods, in which the 
parameterized input forces are the design variables and the 
measured motion is the cost function, should be tested in 
order to get experience for the motion prediction 
challenge. 
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