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Abstract—This paper proposes a systematic method to
optimize wheel torques in a compliant modular robot, which
consists of 3 link-wheel modules connected by revolute joints.
Conventionally, actuators are used at these joints for posture
control while climbing. In this work, use of torsional springs at
the joints is proposed for posture control. The compliance thus
obtained is profitably used to manoeuvre on uneven terrains.
It is also shown how the springs are designed to be stiff enough
to restrict the link-wheel module from tipping over while
climbing big step-like obstacles. The only actively controlled
variables of the robot are wheel torques, which are optimized
to minimize wheel slip. This helps in reducing odometric error
and maximizing energy efficiency. The proposed optimization
builds on the quasi-static analysis of the robot and forms
one of the key novelties of this paper. The results show the
advantages of modularity in climbing big steps without any
slip. The proposed wheel-torque optimization lends utility in
the design of an appropriate wheel velocity controller.

I. INTRODUCTION

The aim of this paper is to present a method to perform
wheel torque optimization on a compliant modular robot,
used for climbing big steps and other forms of structured
obstacles found in human populated environments. In the
past, research on robots for uneven terrain traversal led to
the development of two classes of vehicles. They are, 1)
Passive Suspension Mechanisms and 2) Active Suspension
Mechanisms. Passive suspension mechanisms, like Rocky7
[12] and Shrimp [2] use only wheel actuators for motion and
manage to climb obstacles up to twice their wheel diameter.
The fact that they do not employ any additional actuation
for posture control, comes at the cost of a complex design.
On the other hand, active suspension systems like Hylos [3]
and PAW [11] have simpler designs but they need additional
actuation to control their posture. So far, modular robots
have been a key sub-class of active suspension robots, and
they have been widely used in urban search and rescue
operations [13].

Modular Robots offer many advantages. Firstly, the
motor power is distributed. Therefore, several low torque
motors can be used to realize the desired posture. This
also helps in reducing the size of each individual module.
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Secondly, the redundancy helps in freely deforming along
different types of obstacles. Especially, in urban search
and rescue missions (for example, during earthquakes), it
is necessary to have robots which can navigate through
cluttered spaces (through pipes, rubble, etc.) or on highly
unstructured terrains. Thirdly, as it is modular, it can still
function with limited capability in spite of some modules
malfunctioning, as opposed to its single module counter-
parts. Though modular robots can be controlled to follow
desired trajectories with stable postures (such that the robot
doesn’t tip over), a lot of actuators need to be used in this
process.

It is desirable to have a simple modular mechanism
requiring no additional actuation to control its posture
while navigating on an uneven terrain. Literature on passive
modular robots is less common as it is very challenging
to control the internal mobility of highly redundant robots
while climbing, without any additional link actuation. The
aim of this paper is to propose a novel modular robot which
can successfully climb step-like obstacles with minimal slip
and without any link actuation. Springs are used at the link
joints to passively allow stable postures and restrict unstable
postures by stiffening when required. The stiffness of the
springs is determined to achieve this effect.

Fig. 1: CAD model of the proposed 3-module robot

Figure 1 shows the isometric and the front views of the
robot mechanism. Note that, the analysis in this paper is
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limited to 3 link-wheel modules. This modular robot relies
on wheel actuation for its terrain traversal, and it is the
only parameter that can be controlled to maintain static
equilibrium. However, this is valid only when the wheels are
rolling without slipping. So it is very crucial to ensure that
slippage is kept low so that the robot can be better controlled.
This is a key motivation for proposing the wheel torque
optimization, which will be explained in the subsequent
sections of this paper.

The remaining paper is organized as follows. In Section
11, the modular robot mechanism is introduced, and its quasi-
static analysis is provided. The estimation of stiffness for
the springs used in passive posture control is also described.
Section III introduces wheel slip and presents a systematic
procedure to perform wheel torque optimization with an
objective to minimize slippage. Section VI discusses the
results obtained from the optimization routine while Section
V contains the conclusions and outline for future work.

II. MODEL DESCRIPTION

Fig. 2: Schematic of the 3-module robot

Figure 2 shows a snapshot of the proposed robot mecha-
nism consisting of 3 links and 4 wheel-pairs. Each link and
wheel pair form a module. The link-joints are positioned at
the same height as that of the wheel axes with suitable offset.
The joints at wheels and links are denoted by W; — W, and
J1 — Ja, respectively. The aim of this paper is to only use
the traction forces developed at the wheel-ground contacts
to climb steps. The passive link joints allow the mechanism
to freely deform along an obstacle. When the first wheel
comes in contact with the step, a normal force is developed
in the horizontal direction. This equals the sum of traction
forces of the remaining wheels. This can be proved using
the static equilibrium equations(along the x-direction) of the
mechanism for that instant, as shown in (2). The moment
generated by this normal force lifts the first wheel off the
ground and along the step. Thus the robot begins to climb
steps by the virtue of only the traction forces of its wheels.
Sufficient clearance, c, is provided to ensure that the links do
not collide with the obstacles during their climbing motion.
A more comprehensive discussion on the robot’s design is
given in [1]. The Specifications of the robot are provided in
Table 1.

TABLE I: Specifications of the Robot

Symbols Quantity Values(with Units)
l Link Length 0.15 m
b Link Breadth 0.1m
r Wheel Radius 0.03m
lo Wheel Joint and Link Joint Offset 0.03 m
Twmaz  Stall Torque of Wheel Motors 0.6 Nm
M Mass of Each Wheel 0.1 Kg
my Mass of Each Link 0.3 Kg

(Xcoms Yeom)/
0= tall’l()’mM/XmM)

Fig. 3: A fully passive system failing to climb a big step
like obstacle

A. Stability Analysis of the Passive Mechanism

Stability analysis for a passive mechanism helps in
determining postures of the robot for climbing steps without
tipping over. In this subsection, some design parameters are
first defined, and will be used in subsequent sections for
the purpose of analyses. Let ¢; be the relative joint angle
between links ¢ and i41 and 6; be the absolute joint angle of
link ¢ with respect to the ground, as shown in Fig. 2. When
only one link is climbing at any instant, §; = ¢;. While
climbing steps smaller than its link length, the maximum
angular displacement occurs at the top most point of the
step. Hence, it can be seen that as the step height increases,
0, also increases till a certain 61,4, . For the proposed robot
design, O1mar = Pimar = 729, For step heights nearly
equal to the link length, 61,4, approaches 72°. Beyond this
point, the moment due to the normal force and self weight
will both act in the counter clockwise direction causing
the link to tip-over. Thus the system fails to climb heights
nearly equal to or greater than it’s link length. Figs. 3(a)-
3(c) illustrate how a 2-linked passive modular robot with a
similar mechanism fails to climb a step of height greater
than its link length. This is a major drawback of the fully
passive system. The angle at which the link begins to tip-
over is called the tip-over angle and denoted by 6;,, as
shown in the Figure 3(c). This can be calculated using the
position of the link-wheel module’s center-of-mass(COM) as
010 = pi/2—tan” 1(ycom/Tcom), where (xcon, Ycom)
denote the x and y coordinates of the COM, respectively. It
can be clearly seen that, for a uniform mass distribution, as
the ground clearance of the robot increases, the value of 6;,
decreases. For the proposed robot, 0y, is 72°.

Alternative methods need to be explored to restrict the
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links from going past the tip-over angle 6,, and subsequently
climb bigger steps without tipping over. Ideally, this should
be achieved without any major modification to the existing
mechanism. While the many degrees-of-freedom (DOF) of
the robot help in climbing obstacles by freely deforming
along their contours, they also make it susceptible to tip over
while climbing steep obstacles. Taking this into considera-
tion, the mechanism should be smartly modified to freely
allow deformation against smaller angular displacements
and constrain it when the angular displacements are larger
leading to failure. Spring compliance could be a potential
choice provided the stiffness is carefully determined. The
advantages of springs are detailed in [9] and this paper is
inspired from that work. To determine the optimal stiffness,
it is important to first determine the moments generated
at the respective link joints when the relative angles(¢’s)
between the links approach tip-over angles(f;,). To obtain
the same, a quasi-static model of the robot is developed and
the static stability equations are derived to determine spring
stiffness.

B. Quasi-Static Model of the Modular Robot

(b) Phase-2: two links climbing at any instant

Fig. 4: Snapshots showing the various forces and moments
acting on the robot during the 2 climbing phases

The quasi static analysis of the robot is performed in
two phases. This division is essential as the forces and

moments acting on the robot change from one phase to
the other. Every time a wheel-pair lifts off the ground, its
corresponding normal and traction force are lost and an
additional counter moment is generated due to the spring
at the respective link joint. This changes the >  F, (net
force acting in the y -direction), > F,(net force acting in
the x-direction) and ) M’s (net moments about .J; and
J2), which have to be appropriately adjusted to maintain
static equilibrium. Therefore, when every subsequent wheel
is lifted off the ground, the robot transits from one climbing
phase to the other. This analysis assumes the robot to be
planar as the robot is symmetric along the sagittal plane.

Y F,=0
> F,=0
ZMleo

Nl—Fg—Fg—F4:0
3w+ 4w, — F1 — Ny — N3 — Ny =0

ey
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Equations (1) and (2) contain the static-equilibrium equa-
tions for the first and second phases of climbing obtained
from the postures of the robot shown in Figs. 4(a)-(b). In the
first phase, only link 1 is climbing while the other links(and
wheels) are on the ground supplying the required push force,
as shown in Fig. 4(a). Similarly, in the second phase, links
1 and 2 are involved in climbing at any instant, as shown
in Fig. 4 (b). It is expected that the robot can climb heights
upto lsinf, with just one climbing link and would need
two climbing links for heights between [sinf,, and 2lsinf,,.
In this paper, the analysis is limited to heights requiring at
most 2 climbing links, thus ensuring that there are always
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2 wheel-pairs on the ground to provide sufficient traction at
any given point.

It can be seen that there are 5 equations per phase. The
first 2 equations ensure the equilibrium of forces in the = and
y directions, respectively. The remaining equations denote
the moment equilibrium at the 2 link joints J; and Jo, and
a wheel joint R3, respectively. Note that, w,, = 2m,,g and
w; = myg where m,, and m; denote the masses of the
wheel and link, respectively. F; and N; are the traction and
normal forces acting on i*" wheel, respectively. k; is the
spring constant of the spring acting at the i*" link joint to
maintain static equilibrium at an arbitrary configuration.

C. Compliant Modular Robot

In the earlier section, it is explained that a generic
set of static stability equations cannot be employed for
analyzing and optimizing the modular robot’s step climbing
maneuver as it was shown in [11]. In the PAW([11]) robot
and other passive suspension robots like SHRIMP([2]) and
CRAB([4]), wheels always maintained contact with the
ground. But in the case of the proposed robot, wheel-pairs
may lift off the ground, where necessary, to avoid tip over.
This slightly complicates the quasi static analysis as the
static equilibrium equations change when there is a phase
change during the climbing maneuver. The novelty of this
work is in using compliant elements like springs to passively
ensure that the robot doesn’t tip over and thus develop a
more energy efficient climbing maneuver.

One may note from equations in (1) that the maximum
moment(due to normal and traction forces) is generated
at link joint J; in the first phase, when only one link is
climbing. Ideally, the spring should be stiff enough to resist
this moment and eventually lift the second wheel-pair off
the ground before ¢; reaches 6;,. Once the second wheel is
lifted off the ground, ¢; gradually decreases and ¢ starts
increasing. This would constitute the phase-2 of the climb
which is governed by the equations in (2). Eventually, ¢2
also reaches the tip over angle, if the step is high enough.
It is desired that the spring at link joint J5 is stiff enough
to resist and lift wheel 3 off the ground before that.

Using the fourth equation in (1), one can estimate the
moment required to make Ny = 0. It is assumed that all the
wheels are rotating such that 7, = min(uN;, Twmaz ), Where
pis 1, and N3 and Ny are equal to Ng,g = (4w, +3w;) /4.
1 is assumed to be 1 as it is desired that the springs used are
able to restrict the maximum moment that can be generated
by the traction of all the wheels. Though this analysis starts
with the assumption that mu = 1, eventually, the aim is
to find the least value of the friction coefficient, mu, for
which the robot is statically stable throughout the climbing
phase. As ¢o = 0, the spring at joint Jo will not apply
any counter moment. Substituting the same, the moment
required to lift the wheel off the ground can be obtained.
The slope of the moment with the maximum joint angle
0:, gives, the desired stiffness. This implies that, when the

first link reaches the tip over angle, enough counter moment
is generated by the spring at the joint J; to lift wheel 2
off the ground. In this case, the stiffness of spring 1, k;
is obtained as 2.82 N'm/rad. Similarly, the spring stiffness
at joint Jy is determined by first calculating the moment
required to lift wheel 3 off the ground in the same fashion.
The final equation in (2) is used for this analysis. Here,
only Ny = Ng,, while all other assumptions remain the
same. Therefore, the spring constant ky for spring 2 is
obtained as 8.10 Nm/rad. In this way, compliant joints are
designed to avoid tip over and thus aid in reducing the energy
expended to maintain stability during traversal. Springs also
help in redistributing the normal forces among the remaining
climbing wheel-pairs, when a wheel-pair is lifted off the
ground.

With the addition of springs at the link joints, this
modular robot can successfully climb steps upto twice its
link length with the help of only wheel traction. However,
wheel torques can control this step climbing only under the
assumption that there will be no slippage. So this passive
robot design cannot be fully exploited without ensuring that
wheel slip is minimized. In the next section, the causes of
wheel slip are discussed and an optimization routine with
an objective to avoid slippage is described.

III. WHEEL SLIP REDUCTION

Fig. 5: Free body diagram of the wheel

Figure 5 shows the free-body diagram of a wheel rolling
on a flat surface. It can be noted that, the wheel is in static
equilibrium when F' = 7/r, where r and 7 are the wheel‘s
radius and torque, respectively. For the wheel to maintain
pure rolling, the frictional force F' should always satisfy the
friction constraint equations, F' = ugsN, where ugs is the
coefficient of static friction. Here, F' is directly proportional
to the wheel torque 7. If the wheel torque exceeds sV,
then the wheel begins to slip and frictional force, F' = uqN,
where 4 is the coefficient of dynamic friction. The aim is
to always keep the wheel torque within the limit of psN
to avoid any slippage. However, this is very hard to achieve
as the the p coefficient of the wheel-ground interface is not
known beforehand and it also changes dynamically on any
terrain. Well known slip reduction technologies like Anti-
Lock Braking System (ABS), which is used extensively
in automobiles, are equipped with sensors to detect wheel
slip and then a corrective torque control action is taken till
the wheel stops slipping. But this method requires slip to
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occur. A preventive method, which is not only robust but
also exploits the robot’s suspension mechanism to minimize
slippage is desirable. Note that, for this analysis, it is
assumed that the wheels rotate with a constant velocity.

To develop the analysis, one may first begin by assuming
that there is no slip, and then estimate the F; and N; values
across various points on the terrain by minimizing ), F;/N;
to achieve this objective of no slip. For each wheel, this
procedure estimates the least wheel-ground friction coef-
ficient value for which the proposed robot doesn’t slip.
Denote the maximum value of the F;/N; ratio obtained from
this optimization as . The mechanism with lower p, can
traverse on a wider spectrum of surfaces without slipping.

Note that, slippage doesn’t hinder the climbing ability
of this robot. The robot can still successfully climb even
if there is slip in some of its wheels. However, slip makes
it difficult to exercise control on the robot and also wastes
power. Therefore, it is very important to study it carefully
and create mechanisms which can minimize slip.

A. Posture Estimation

It is important to estimate posture of the robot at various
heights during the climbing phase. The use of 2-links for
climbing at any instant, allows the robot to climb steps/walls
as high as 2lsin(6;,)(i.e., hmas) without tipping over as
explained in Section-III. To estimate the postures, the step
height is divided into n set points between 0 and h,, ., €ach
point separated by a distance of 0.01m. The posture of the
robot at all the set points is determined so that they can to
used to derive the static stability equations for that posture.
For step heights that involve only one climbing link i.e.,
heights between 0 and lsin(6;,) (phase-1), the posture of
the robot, in terms of the joint angles, can be determined
as ¢} sin~t(h7/l) and ¢ = 0. When ¢; = 70°
(phiy = 04,) , i.e., after having climbed a height of 0.14m,
the robot transitions to phase-2. Wheel-pair-2 is lifted off
the ground and the robot now has two climbing members.
This process reduces ¢; and increases ¢ while ensuring
that 61 < 6;,. The desired postures for the second phase can
be obtained by running a simple optimization procedure for
all the heights between lsin;, and 2lsin;, as shown in (3).
The objective function ensures the net change in the relative
angles is minimized while moving from one set-point to the
other. This is very important from the quasi-static point of
view as a drastic change in posture with a small increase
in height cannot be attained without taking the dynamics of
the system into consideration.

2
L j 1.2
m111117rn2126 ;(gﬁz -7
subject to  Isin(¢y + ¢2) + Isin(py) = b7
P1+ g2 < bro
0 < ¢1,02 < b

3

This provides the posture desired from the robot at var-
ious set-points. The F'/N ratio has to be minimized across
all these set-points to estimate the robot’s performance and
localize potential regions for slippage.

B. Optimization Routine

Wheel torque optimization is a very active research area
and several instances of successful application of wheel
torque control for mobile robots, like SHRIMP [2] and
CRAB [10], have been reported earlier in [7], [8], [5],
[4]. A detailed study of this method is given in [6]. As
explained in the earlier sections, all these robots have wheels
maintaining ground contact during traversal. The proposed
optimization is based on the quasi-static model of the robot,
and is performed in the phased manner. Depending of the
set point height, a different set of static stability equations
are used as constraints for the optimization routine.

The objective of this optimization procedure is to esti-
mate the least F;/N; values for all the wheel-pairs at all the
set points between 0 and A,,q,,. TWo optimization procedures
are carried out for the two climbing phases. The objective
function will remain the same for both the procedures, and

is given in (4).
4
> FE/N:
i=1

The design variables are F;’s and N;’s of all the four wheels.
For maintaining an arbitrary posture of the robot, the static
equilibrium equations have to be satisfied at that posture.
Thus, they form the equality constraints to this problem.
These equations change from one phase to the other at the
set point lsinby,, to reflect the fact that the second wheel
is lifted off the ground. Therefore, for phase-1, the equality
constraints are obtained from (1) and for phase-2, it is ob-
tained from (2). As the posture is predetermined for a given
height, the equality constraints are linear. However, since
the objective function is non-linear, Simplex method cannot
be used to search for an optimal solution along the vertices
of the convex polygon that denotes the feasible region. The
entire feasible region has to be explicitly searched to obtain
a global optimal solution. This is computationally intensive
and standard functions like fmincon (of MATLAB) rely on
a strong initial guess provided by the user, to narrow down
their search. Providing a good initial guess is hard in this
scenario as the optimization routine has to be run on all
the set points and each one may have a good initial guess
of its own. An alternative approach is to further compress
the feasible region by tightly bounding the design variables
using the knowledge of their properties and the desired
objective. To this end, additional linear inequality constraints
are added to the system to reduce the feasible region and
ensure that the proximity of the obtained solution is as close
to the global minimum as possible. Equation (5) is to restrict
the optimal F'/N ratio to always remain between 0 and 1
for all the wheels and at all the set points. Equation (6)
bounds the wheel motor torques for all the wheels with

“
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Fig. 6: Optimized F'/N values for all the wheels

their maximum values. Finally, the ratio will also decrease if
normal N increases. Therefore, equations in (7) ensures that
the search space consists of only regions where N increases
or maintains atleast N4, viz. the normal force on a flat
terrain. Additionally, for phase 2, F» and N, are equated
to 0 as wheel 2 is lifted off the ground and its traction no
longer contributes to step climbing.

F<N Vi=1. .4 )
0< Fy < Twmas/r Vi=1...4 6)
phase 1: N; > Ngygq i€{2,3,4} -
phase 2 N; > Nyyg i€ {3,4} Q)

The above mentioned optimization routine is performed
for step of height 0.310m and at all its intermediate set
points. The results are presented and discussed in the next
section.

IV. RESULTS AND SIMULATION

The optimal F'/N ratios for all the wheels thus obtained
are plotted against the various height set-points, as shown in
Figure 6. It can be noted from Figure 6(a) that, for wheel-
pair-1, the F//N ratio is consistently lower (max F;/N;
= 0.2357) as compared to all other wheels and especially
lower in phase 1. In phase-1, all the three wheel torques
combine to provide the horizontal normal force N;. Thus,
Ny is always greater than or equal to 3/N,,,. Even though
the required wheel torque for rolling might remain the same
while climbing the step, the normal force has more than
tripled thus greatly reducing F; /Np. This implies that this
robot can climb on a very slippery surface without slipping
as the reduction in pg is being compensated by increase in
normal force N. This is the key novelty of modularity that
this robot design wishes to exploit. For phase-2 however,
the normal force N; > 2N,,4. Therefore, this robot can
climb a step without slipping even if ;4 drops to a third of
its original value in phase-1 or to half its value in phase-2.
This makes this robot mechanism robust to changes in
during step climbing.

For wheel-pair-2, as shown in Figure 6(b), F5/Ns re-
duces with an increase in height as Ny increases in this
process. However, in phase-2, wheel-pair-2 is not actuated

as it can no longer provide traction. For wheel-pair-3, as
shown in Figure 6(c), a trend similar to that of wheel-pair-2
is observed. It starts decreasing appreciably in phase-2 when
wheel-pair-2 is off the ground as N3 increases. Wheel-pair-
4 has a counter intuitive trend. The average F,/N, value
is 0.0483 which is very low. However, the ratio increases
in phase 2 instead of decreasing as in the case of other
wheels. When the second wheel-pair is lifted off the ground,
to maintain static equilibrium in the x-direction, forces
are redistributed thus increasing the values of F3 and Fj.
However, for wheel-pair-3, N3 also increases accordingly
and therefore the ratio could be kept lower. The normal force
Ny, on the other hand, doesn’t increase proportionally thus
increasing the ration in the case of wheel-pair-4.

E
g 1 25 1

F
Z o8 20 ,:2
@ = 3
306 ~ 15 F
z 3 4
S0.4 5 10

w

T 0.2 5
()
S 0

0.1 0.2
Step height (m

0.1 0.2 0.3

Step height (m

0

(a) Wheel torques (b) Frictional forces
Fig. 7: Plots of optimized wheel torques and frictional forces
against step height for all the 4 wheels

From the quasi-static analysis, one can conclude that
wheel-pair-3 is most susceptible to slip while step climbing
followed by wheel 2. The design ensures that any wheel
that is climbing the step is always least susceptible to
slip. However, this analysis only provides wheel torque
requirements to maintain a desired posture of the robot
at a certain step height. But in a practical scenario, the
robot will have to move from one set point to the other
to make its way from the bottom of the step to the top.
Generally, robots moving on a rough terrain move slowly
with a constant velocity as discussed in [7]. To achieve the
desired constant velocity, additional wheel torque needs to
be supplied. The implications of combining velocity control
model with this optimized wheel torque model is discussed
in the next subsection.

Figure 7(a) shows the wheel torques required to maintain
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static stability at various heights between 0 and M-
The saturation torque of all the wheel motors is 1Nm.
However, the maximum torque that was generated during
this routine was only 0.53Nm, by wheel-pair-3. So the
torque requirements are well within the range. Figure 7(b)
shows the same curves from the frictional force perspective
and compares them to the average normal force N,,q4. This
makes it clear that wheel-pair-3 will slip even if p = 1,
for step heights less than 0.03m and its slippage will only
worsen with the addition of velocity control or when y is
low. Wheel-pair-2 is the next most susceptible to slip on
surfaces with low 4 values. It can be noted that wheel-pairs-
1 and -4 require very little torque to attain static equilibrium
and they can apply much greater torque without causing
slippage. Therefore, to reduce slip the robot should be made
to travel on the step with a higher velocity that on the
flat ground. This way, the climbing members will reach
phase-2 sooner thus ensuring that wheels 2 and 3 don’t slip
long enough. This can be achieved without much slip at
wheel-pair-1 due to the high N; value. These insights, if
incorporated into an wheel velocity controller, can lead to
an efficient climbing manoeuvre which is energy efficient
and robust to the frictional properties of the surface.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a wheel-torque optimization of a
modular wheeled robot with compliant link-joints. A de-
tailed quasi-static analysis of the model is presented, and
used to determine optimal spring stiffness values for each
link-joint. It has been shown that the robot is able to
negotiate steps whose heights are upto twice its module’s
link length using only wheel traction. Next, wheel torque
optimization is presented to minimize wheel-slip leading
to better control and energy efficient climbing. This also
helps in predicting wheel-slip of the robot on wheel-ground
contacts with known coefficients of friction. The proposed
approach lends utility in determining the maximum velocity
that the robot can attain without slipping, and designing a
wheel torque controller for step climbing.

Implementation of the proposed framework for the con-
trol of an actual prototype will be carried out in future. A
similar wheel torque optimization for climbing down motion
will also be investigated. The present study ignores rolling
resistance which will be incorporated in the future work.
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