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Abstract—A hybrid control strategy is used in this work
to suppress the structural vibrations of a flexible system.
The hybrid controller is based on the combination of inverse
dynamics feedforward control, command shaping and linear
state feedback control. The nonlinear feedforward control is
derived using inverse dynamics, which is useful to linearize
the system around the nominal trajectory. The feedback loop
is designed with linear observer based optimal regulator which
ensures stabilization and performance objectives. Finally, the
command shaping is incorporated to obtain the desired non-
oscillatory response. Command shaping is an effective way of
improving the performance of systems with flexible dynamics,
e.g. flexible manipulators, flexible structures, spacecraft with
large appendages, ships, cranes and telescopes. The method is
applied to the case of a flexible inverted pendulum on a moving
cart. The simulation runs show the efficacy of the proposed
controller in vibration suppression of a highly flexible system.

Keywords—Flexible manipulators; command shaping; vibra-
tion suppression; lumped parameter model; cart-pole

I. INTRODUCTION

Faster response and energy efficient consumption are
the two major factors, which have motivated the design of
light-weight, flexible manipulators. Mostly, the conventional
robots are designed with maximum stiffness to achieve good
positional accuracy and non oscillatory response. The high
stiffness leads to the bulky manipulators, which consumes
more power and have low payload to robot weight ratio.
The viable solution to such problems is to relax the stiffness
constraint and seek flexible manipulators. These manipula-
tors have lighter design, fast motion, low power consumption
and high payload to robot weight ratio [1]. Research in the
field of flexible manipulators started in 1970’s when Book
[2] initiated the research on modeling and control of the
flexible link manipulators by modeling an elastic chain with
an arbitrary number of links and joints. The initial studies
[2]–[4] on the control of flexible manipulators started under
the domain of space applications with the objective of mini-
mizing the launching cost. Thereafter, flexible manipulators
have been studied under various challenging applications
like painting, drawing, polishing, pattern recognition, nuclear
maintenance, storage tank cleaning and inspection, micro-

surgical operation, automated deburring and many other
similar operations.

However, achieving precise control of such manipulators
is a challenging task that is critical in many areas like
nuclear industry, medical surgery and space applications. To
obtain good positional accuracy, it is important to have a
good mathematical model of the flexible system in hand.
Several researches in the past have tried different modeling
techniques to obtain the dynamic model of flexible manip-
ulators. These modeling techniques are broadly classified
into two main categories — distributed systems and discrete
systems. Due to the infinite-dimensional model of distributed
systems, solutions as well as controller design are more
difficult as compared to the corresponding discrete models.
Therefore, many researchers in the past have adopted ap-
proximate solutions to obtain discrete models of the flexible
systems. These approximate solutions are broadly classified
as lumped parameter methods (LPM) [5], assumed modes
method (AMM) [6] and finite element method (FEM) [7].

Both feedforward as well as feedback control schemes
have been separately used in the literature to control flexible
manipulators. Feedforward strategy includes Fourier expan-
sion, computed torque techniques, bang-bang control (open-
loop time-optimal control) and open-loop input shaping
techniques. Bang-bang control requires two-impulse inputs,
which excites all the modes of the structure and leads to high
vibration levels. Open-loop input shaping is used extensively
by researchers as an active vibration suppression strategy to
obtain a non-oscillatory response.

II. COMMAND SHAPING

Command shaping is an effective way of improving the
performance of systems with flexible dynamics, e.g. flexible
manipulators, flexible structures, spacecraft with large ap-
pendages, ships, cranes and telescopes. The method involves
the convolution of the reference input with a sequence of
impulses to obtain a non-oscillatory response. The input
shaper variables, i.e. amplitudes and time instants of the
impulses are found by satisfying a set of constraint equations
which are functions of natural frequencies and damping
ratios of the flexible system. However, following the no-
free-lunch policy, commanded input signal comes with a
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Fig. 1. Response of a LTI system to first impulse.
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Fig. 2. Response of a LTI system to second impulse.
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Fig. 3. Combined Response of a LTI system to both the impulses.

marginal time penalty — equal to the length (duration) of
the shaper. Furthermore, the command shaping techniques
are highly susceptible to modeling errors and parametric
uncertainties. Therefore, it is assumed a priori that a well
established dynamic model of the physical system exists.

A. Concept of Command Shaping

To introduce the concept, a simple case of response of the
system to two impulses is taken. Impulse plays a pivotal role
in all the command shaping techniques. Expected response
of a second-order linear-time-invariant (LTI) system after
being hit by an impulse of magnitude, say A1, is shown
in the Fig. 1. The impulse will cause the flexible system
to vibrate with some frequency. To cancel the vibrations
being induced in the system by the first impulse, a second
impulse of magnitude A2 is applied on the system at a later
stage. Figure 2 shows the response of the system to the
second impulse. Using the superposition principle, both the
responses can be combined together and their combination

will result in zero residual vibrations as shown in Fig. 3.
However, the magnitude as well as timing of the second
impulse must be very precise. This simple process shows
that with the judicious use of impulses, it is possible to
obtain vibration-free response.

III. DYNAMIC MODEL

This section presents the dynamic model of a flexible
manipulator (cart with an inverted flexible pendulum) using
lumped parameter modeling. Using the Euler-Lagrange ap-
proach, the dynamic model of a general flexible manipulator
(refer [8]) can be written in the standard form as

M(θ)θ̈ + n(θ, θ̇) + g(θ) +Kθ = τ , (1)

where θ ∈ Rn×1 is the vector of generalized coordinates,
M(θ) ∈ Rn×n is the symmetric and positive-definite inertia
matrix, n(θ, θ̇)∈ Rn×1 is the vector of Coriolis and cen-
tripetal forces, g(θ) ∈ Rn×1 is the vector of gravitational
forces, K ∈ Rn×n is the diagonal stiffness matrix and
τ ∈ Rn×1 is the vector of generalized forces.

A. Case Study: Cart with a Flexible Pole

In this section, dynamic model of the cart with a flexible
pole is presented using the Euler-Lagrange approach, which
is developed by the author in [9]. The flexible pole can be
modeled as a series of rigid rods connected by torsional
springs. For simplicity, the pole is assumed to consist of
two such rigid segments interconnected by a torsional spring
(k2) as shown in the Fig. 4. For the cart-pole system, vector
of generalized coordinates is given as θ = (x, θ1, θ2)

T and
vector of generalized forces as τ = (f, 0, 0). The dynamic
model of the cart-pole system can be given as
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g(θ) =


0
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l2
2 S12
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 , (4)

K =

[
0 0 0
0 k1 0
0 0 k2

]
. (5)

This dynamic model has been utilized in the later section
during the controller design phase of the cart-pole system.

IV. LINEARIZATION OF THE DYNAMIC MODEL

The nonlinear dynamic model can be linearized about the
nominal trajectory with P(τn,θn, θ̇n, θ̈n) as the nominal
point. The general form of the linearized dynamic model
[10] can be given as

MLq̈ + NLq̇ + GLq = u, (6)

where ML,NL,GL are n× n matrices, and other variables
are defined as

τn = nominal torque
= M(θn)θ̈n + n(θn, θ̇n) + g(θn) +Kθn, (7)

θn(t) = nominal joint vector, (8)
u = control-input vector, (9)

q(t) = θ(t)− θn(t) (10)
= deviation from the nominal trajectory.

The linearized dynamic model can be represented as

ML =



M +m1 (m1
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2
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(11)

NL =

[
∂n
∂θ̇

]
P

=

[
0 0 0
0 0 0
0 0 0

]
, (12)

GL =

[
∂(n)
∂θ

]
P

+

[
∂(g)
∂θ

]
P

+ K

=


0 0 0
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2
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0 −m2g
l2
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 .(13)

A. State space model

The above linearized dynamic model can be represented
in the standard state space form as

ẋ(t) = Ax(t) + Bu(t), (14)

where

x(t) =

{
q(t)
q̇(t)

}
, ẋ(t) =

{
q̇(t)
q̈(t)

}
, (15)

A =

 0n In

−M−1L GL −M−1L NL

 ,B =

 0n

M−1L

 .

This state-space representation is helpful in checking the
controllability and observability of the system. Moreover, it
helps in designing the feedback loop of the controller, which
is based on the linear control theory.

B. Controllability and Observability

The controllability and observability test matrix for a
linear, time-invariant (LTI) system is given by

Rc =
[
B AB A2B · · · An−1B

]
. (16)

Ro =
[
CT ATCT (AT )2CT · · · (AT )n−1CT

]
,(17)
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V. CONTROLLER DESIGN

In this section, the procedure for controller design for the
tracking problem of nonlinear, unstable flexible manipulators
is presented. The control action of the considered controller
is given as

u = uff + ufb, (18)

The controller consists of three parts: 1) a nonlinear feedfor-
ward term, 2) a linear observer based optimal feedback term
and 3) an input shaper. The development of each part of the
controller can be found at [9], where the error dynamics of
the reduced-order compensator can be written as{

ė(t)
ėou(t)

}
=

[
A− BKopt −BKu

0 F

]{
e(t)

eou(t)

}
+

{
−A
0

}
xd(t), (19)

where e(t) = xd(t) − x(t) is the tracking error, eou(t) =
xu(t)−xou(t) is the estimation error, xd(t) = {qTd , q̇

T
d }T is

the desired state-vector and Kopt is the optimal feedback
gain matrix being partitioned as Kopt = [Km Ku]. The
feedback gain matrix Kopt is obtained by exploiting the opti-
mal control theory, which produces the best possible control
system to achieve the desired performance objectives. The
aim of the optimal control problem is to minimize the control
energy and transient energy of the system by formulating the
following objective function

J∞(t) =

∫ ∞
t

[
xT (τ)Q(τ)x(τ) + uT (τ)R(τ)u(τ)

]
d(τ),

(20)
which is subjected to the following constraint

ẋ(t) = A(t)x(t) + B(t)u(t). (21)

The outcome of the optimal control problem is the feedback
gain matrix Kopt such that the scalar function J∞(t) is
minimized.

VI. SIMULATION RESULTS

This section demonstrates the efficacy of the proposed
control scheme by implementing the controller on the cart-
pole system. The control objective is to move the cart by
a required distance while preventing the flexible pendulum
from falling. This nonlinear unstable system can be thought
of as a robot showing the art of balancing a flexible stick
on its palm.

A. Case Study: Cart with a Flexible Pole

In the present section, the example of a moving cart with
an inverted flexible pendulum is considered for the simula-
tion. The control objective is to move the cart by one meter,
while not letting the pendulum to fall, i.e. the desired state-
vector xd = {1 0 0 0 0 0}T . For the simulation run, the
numerical values of the parameters of the system are given in
Table I. Putting these parameter values in the Eqns. (11), (12)

TABLE I. SYSTEM PARAMETERS OF THE CART-POLE SYSTEM.

Parameter Units Symbol Value
Mass of the cart kg M 1
Mass of the first link kg m1 0.05
Mass of the second link kg m2 0.05
Length of the first link m l1 1
Length of the second link m l2 1
Spring stiffness at first joint Nm/rad k1 5
Spring stiffness at second joint Nm/rad k2 500

TABLE II. CONTROLLER PARAMETERS OF THE CART-POLE SYSTEM.

Parameter Symbol Value
State weighting matrix Q diag([5000, 500, 0, 20, 0, 0])
Control cost matrix R [50]
Vector of desired ROO poles v [−20,−22± 60i,−60± 69i]T

Optimal gain matrix Kopt [10,−1.29,−0.43, 4.80, 0.02,−0.01]

TABLE III. SHAPER PARAMETERS OF THE CART-POLE SYSTEM.

Impulse First Mode Second Mode Third Mode
(i) Magnitude Time Mag. Time Mag. Time
1 0.9183 0.0000 0.2792 0.0000 0.250 0.0000
2 0.0799 1.4694 0.4984 0.5350 0.500 0.0049
3 0.0017 2.9387 0.2224 1.0701 0.250 0.0098

and (13), ML,NL and GL are obtained, which are further
used in Eqn. (14) to obtain the linear state-space represen-
tation. The only input to the system (u(t)) is the horizontal
force applied to the cart and three outputs are the horizontal
position of the cart (x(t)), angular position of the first link of
the pendulum (θ1(t)) and angular position of the second link
of the pendulum (θ2(t)). The state-vector of this sixth-order

plant is x(t) =
[
x(t), θ1(t), θ2(t), ẋ(t), θ̇1(t), θ̇2(t)

]T
.

First of all, controllability of the plant is found by
using Eqn. (16). Rank of the controllability test matrix
Rc is found to be 6, which implies that the plant is
controllable. The eigenvalues of the plant are λOL =
[ 0, 0,±5.89i,±638.92i ]. Due to the presence of a double
pole at the origin, the plant is unstable to start with and
cannot be controlled with the feedforward control only.
Thus, feedback term ufb is necessarily required and is being
calculated using the optimal control theory. The task of the
feedback control is to stabilize the plant and obtain the
positional accuracy.

The controller parameters are given in Table II. The
selection of Q and R are made on the basis of trial
and error to keep a check on the settling time, max-
imum overshoot and actuator effort. Using these pa-
rameters, optimal gain values are found as Kopt =
[10, −1.29, −0.43, 4.80, 0.02, −0.01]. With the se-
lection of feedback gains, the eigenvalues of the closed-
loop tracking system are found to be λCL = [−0.01 ±
638.92i, −0.21±5.87i, −2.13±2.14i]. All the closed-loop
eigenvalues with negative real parts justifies the selection
of feedback gains and ensures asymptotic stability of the
closed-loop system.

Out of the three outputs mentioned above, the reduced-
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Fig. 5. Reference input vs shaped input to the cart-flexible-pole system.

order observer is designed by taking the cart’s position as
the only output variable. Thus, taking y(t) = {x(t)}, the
output coefficient matrices are given as C = [1 0 0 0 0 0]
and D = 0. Using the position of the cart as the only output
variable, observability test matrix Ro is calculated using Eqn.
(17). The rank of Ro is found to be 6, which implies that
the plant is observable with y(t) = {x(t)}. The observer is
designed by placing the observer poles suitably in the left-
half plane, i.e. v = {−20, −20± 60i, −60± 69i}T . While
designing the reduced-order observer, the first step is to
partition the state-vector into measurable and unmeasurable
parts i.e. x(t) =

{
x1(t)T , x2(t)T

}T
, where x1(t) = {x(t)}

and x2(t) =
{
θ1(t), θ2(t), ẋ(t), θ̇1(t), θ̇2(t)

}T
. The out-

put equation is y(t) = Cx1(t), where C = 1. With the given
choice of observer poles, the observer gain-matrix is found to
be L = {−19.49, 193.59, 184, −10721.42, 36914.31}T .
The shaper parameters for all the three modes are given in
Table III. After getting the shaped input, the control action
u is calculated using the Eqn. (18) and the dynamic model
is solved to obtain the state-vector.

Figure 5 shows the reference unshaped input vs 1/2/3-
mode shaped input for the Cart in the x direction, whereas
Fig. 6 shows the unshaped vs first-mode shaped response of
the system. In this simulation, the unshaped response of the
system is obtained using full-state-feedback-control (FSFC),
whereas the shaped response is obtained using linear-optimal
control theory along with a reduced-order observer. Figure 6-
(a) shows the comparison of unshaped vs first-mode shaped
response of the cart position in the horizontal direction, i.e.
x(t). As mentioned earlier, the desired cart position xd(t) =
1 meter. It can be observed that in the case of unshaped
response, the extreme right position of the cart is 1.0614
meter, which is reduced to 1.0112 meter in the case of first-
mode shaped response. This results in a 4.73% reduction
in the extreme cart position, i.e. |x(t)max|. Similar trend
can be observed in peak vibration amplitudes of θ1(t), θ2(t)
and u(t), as shown in the Fig. 6-(b), (c) and (d) respectively,
where a reduction of 8.11%, 8.32% and 10.79% is found in
the shaped response and control input.

In the next simulation, response of the system to two-
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Fig. 6. Unshaped vs first-mode shaped position response and required
control-input plot of the cart-flexible-pole system.

mode shaping process is observed. The desired position
in this case is obtained by the convolution of first two
modes. It can be noticed in Fig. 7-(a) that |x(t)max| is
reduced to 1 meter in the two-mode shaped response as
compared to 1.0614 meter in the case of unshaped response,
resulting in a 5.78% reduction in the overshoot of cart
position. Similarly, as shown in the Figs. 7-(b) and 7-(c),
a significant reduction is observed in the peak vibration
amplitudes of θ1(t) and θ2(t) respectively. To be precise,
there is a 80.99% reduction in the peak vibration amplitude
of θ1(t) and 80.01% reduction in θ2(t).

It can also be seen in Fig. 7-(b) that the vibrations
present in the unshaped position of the first link of the
flexible pendulum quickly decays in the shaped response,
whereas there are still some vibrations left in the shaped
response of θ2(t). These vibrations of the second link show
the structural vibrations of the flexible pendulum, which are
yet to be taken into account in the shaping process. The
amount of control input has also reduced by 56.83%, as
shown in the Fig. 7-(d). It is worth mentioning here that the
time period of the second mode is 1.0701 second. Thus,
the two-mode shaped response is delayed by this much
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Fig. 7. Unshaped vs two-mode shaped position response and required
control-input plot of the cart-flexible-pole system.
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TABLE IV. LEVEL OF VIBRATION REDUCTION AND CONTROL
TORQUE COMPARISON OF UNSHAPED VS SHAPED RESPONSE.

Variable Unshaped 

Response 

One Mode Shaping Two Mode Shaping Three Mode Shaping 

Value % Reduction Value % Reduction Value % Reduction 

|x(t)max| 1.0614 1.0112  4.73 % 1.0000  5.78 % 1.0000  5.78 % 

|!1(t)max| 13.0915 12.030 8.11 % 2.488   80.99 % 2. 488 81.00 % 

|!2(t)max| 0.0429 0.0393 8.32 % 0.0086  80.01 % 0.0078 81.83 %  

|dx(t)max| 1.3069 1.2002 8.17 % 0.7903 39.53 % 0.7901 39.54 % 

|d!1(t)max| 1.1555 1.0613 8.16 % 0.2349 79.67 % 0.2272 80.33 % 

|d!2(t)max| 0.0616 0.0585 10.05 % 0.0148 75.97 % 0.0089 86.36 % 

|u(t)max| 10.00 8.9206 10.79 % 4.3165  56.83 % 4.1920 58.08 % 

amount as compared to the one-mode shaped response. The
comparison of rate responses of the state-variables was also
shown in Fig. 8, where a similar trend can be observed.
A significant reduction of 39.53%, 79.67% and 75.97% is
observed in the peak vibration amplitudes of ẋ(t), θ̇1(t) and
θ̇2(t) respectively.

In the last simulation run under this category, all the three
modes are convolved together to modify the desired profile
of the cart position xd(t). The comparison of unshaped
profile with one, two and three mode shaped profile is
given in the Fig. 5. This comparison demonstrates how the
desired profile gets modified with the use of multi-mode
shaping. Furthermore, the additional delay can be seen in
achieving the desired cart position of 1 meter. As shown in
the above figure, there is hardly any difference in two-mode
and three-mode shaped profile. This is due to the fact that
the stiffness of the second spring k2 is kept very high to
introduce high-frequency vibrations into the system. These
high-frequency vibrations represent structural vibrations of
the flexible pendulum. Due to very high frequency, the time
period of the third mode is 0.0098 seconds. This means that
the response of the system to three-mode shaped profile is
delayed by 0.0098 seconds as compared to the response of
the system to two-mode shaped profile.
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Fig. 9. Unshaped vs three-mode shaped position response and required
control-input plot of the cart-flexible-pole system.

It can be clearly seen in Fig. 9-(a) that similar to the two-
mode shaping case, there is a 5.78% reduction in |x(t)max|.
Further, reduction in the peak vibration amplitude of θ1
and θ2 has increased marginally to 81% and 81.83%, as
shown in Figs. 9-(b) and 9-(c), respectively. The reduction
in the control input has increased to 58.08%, as shown in
Fig. 9-(d). All the results of unshaped vs 1/2/3-mode shaped
response are tabulated in Table IV. As the third mode depicts
the structural vibrations of the flexible pendulum, significant
reductions are observed in θ2 and θ̇2, whereas there are only
marginal reductions in the remaining state-variables. Explic-
itly, there is an additional reduction of 1.82% in |θ2(t)max|
and 10.39% in |θ̇2(t)max|, as compared to the two-mode
shaped response. Hence, all the three simulation runs clearly
demonstrates the efficacy of the proposed control scheme in
significantly reducing the vibration levels as well as control
input to the unstable plant.

VII. CONCLUSIONS

This paper has presented the development of a hybrid
controller for flexible manipulators, which is a combination
of nonlinear feedforward term, linear state feedback term and
command shaping technique. It is shown in this work that
linear feedback is sufficient to control a highly nonlinear and
unstable flexible system. This work has presented the imple-
mentation of a linear observer based feedback strategy on the
cart-pole system. The control objective was to move the cart
by a required distance while not letting the flexible pendulum
to fall. A comparison of the results has demonstrated that
the controller designed for the shaped input is working better
than the one designed for unshaped input. Effectiveness of
the proposed controller has been demonstrated by showing
a significant reduction in the vibration levels as well as
in the actuator effort. Also, the importance of command
shaping scheme has been demonstrated by achieving a non-
oscillatory response.
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APPENDIX

A. Zero Vibration/Two-Impulse Sequence

In the last section, the analytical development of the
shaper is presented. It is already shown in Fig. 3 that with
the sensible use of two impulses, vibration-free response can
be obtained. These, first shapers of their generation, can be
formed using constraints which can limit the residual vibra-
tion of the system to zero at the modeled natural frequency
and damping ratio, provided there is no error in the modeled
frequency. Thus, these shapers are typically known as Zero
Vibration (ZV) shapers [11]. In this section, the analytical
method to find the amplitudes (Ai) and time locations (ti)
of ZV shapers is outlined. It is well known that the behavior
of an n-th order system can be well represented by the
superposition of second-order systems. The transfer function
of such a general, underdamped, second-order system can be
given as

G(s) =
ω2
n

s2 + 2ζωn + ω2
n

, (22)

where ωn and ζ are the natural frequency and damping
ratio of the underdamped system respectively. The impulse
response of a second-order system, which is valid for
0 < ζ < 1, is given as

yo(t) =
Aoωn√
1− ζ2

e−ζωn(t−to) sin(ωn
√
1− ζ2(t− to)),

(23)
where Ao and to are amplitude and time instant, when the
impulse is applied. Using the principle of superposition,
response of the system to a sequence of N impulses after
the time of last impulse can be obtained as

y(t) =
N∑
i=1

[
Aiωn√
1− ζ2

e−ζωn(t−ti)

]
sin(ωn

√
1− ζ2(t−ti)),

(24)
where Ai and ti are the amplitudes and time instants of the
i-th impulse. Using polar coordinates, the above equation
can be written in more compact form as

y(t) = P sin(ωdt+ β), (25)

The above solution is valid for t > tN . Here, β represents the
phase shift (unimportant here) and P is the residual vibration
amplitude given as

P =

√√√√( N∑
i=1

Pi cos(ωdti)

)2

+

(
N∑
i=1

Pi sin(ωdti)

)2

, (26)

where

ωd = ωn
√

1− ζ2 = Damped natural frequency,(27)

Pi =
Aiωn√
1− ζ2

e−ζωn(t−ti). (28)

To calculate P caused by an impulse sequence of N
impulses, (26) is evaluated at the time instant of last impulse,
t = tN . Substituting the value of Pi from (28) in (26), and
taking constant terms out of the square root, the amplitude
of single-mode residual vibrations (refer [1], [12], [13]),
as an outcome to a sequence of impulses, can be obtained as

P =
ωn√
1− ζ2

e−ζωntN
√
Q1 +Q2, (29)

where Q1 =

{
N∑
i=1

Aie
ζωnti cos(ωdti)

}2

,

Q2 =

{
N∑
i=1

Aie
ζωnti sin(ωdti)

}2

.

To represent the above amplitude as a non-dimensional
quantity (refer [14]), (30) can be divided by the amplitude
of a residual vibration from a single impulse of a unity
magnitude (Pδ), which is given as

Pδ =
ωn√
1− ζ2

. (30)

The resulting percentage of residual vibration expression i.e.
V (ωn, ζ) =

P
Pδ

, represents the ratio of vibration with input
shaping to that without input shaping. Thus, the relative
vibration expression (in percentage values) can be written
as

V (ωn, ζ) = e−ζωntN
√
[VC(ωn, ζ)]

2
+ [VS(ωn, ζ)]

2
,

VC(ωn, ζ) =
∑N
i=1Aie

ζωnti cos(ωdti),

VS(ωn, ζ) =
∑N
i=1Aie

ζωnti sin(ωdti).


(31)

The zero-vibration solution leads us to set V (ωn, ζ) = 0
and solve for the variables of the shaper. However, since
the Eqn. (31) is nonlinear and under-determined in nature,
infinite possible solutions can exist. To avoid trivial solu-
tions, i.e. zero-valued and infinite-valued impulses [15], it
is better to put some constraints on the system. Thus, the
two-impulse sequence can be found by solving a nonlinear
system of equations as

V (ωn, ζ) = 0, (32)
2∑
i=1

Ai = 1, (33)

Ai > 0 ∀ i. (34)

The above problem has four variables (A1, A2, t1, t2). The
second equation, i.e. Eqn. (33) signifies that the shaped com-
mand signal produces the same rigid-body motion as that
of the reference signal. The next inequality in (34) avoids
saturation of the actuators. To avoid more delay, choose
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t1 = 0, leading to a nonlinear system with three unknowns
only. Thus, Eqn. (31) can be written in an expanded form
as

VC(ωn, ζ) =
2∑
i=1

Aie
ζωnti cos(ωdti) (35)

= A1e
ζωnt1 cos(ωdt1) +A2e

ζωnt2 cos(ωdt2)

= 0,

VS(ωn, ζ) =
2∑
i=1

Aie
ζωnti sin(ωdti) (36)

= A1e
ζωnt1 sin(ωdt1) +A2e

ζωnt2 sin(ωdt2)

= 0.

Using t1 = 0, the above equations can be written as

A1 +A2e
ζωnt2 cos(ωdt2) = 0, (37)

A2e
ζωnt2 sin(ωdt2) = 0. (38)

Solving above equations, the ZV shaper in compact form
can be written as

[ A

t

]
2

=

 1
1+M

M
1+M

0 π
ωd

 , (39)

where M = e
− ζπ√

1−ζ2 . (40)

The ZV shaper is highly susceptible to modeling errors and
parametric uncertainties. That is why it is being called as a
non-robust shaper. To tackle this problem, robustness issue
as well as more robust shapers are presented in next sections.

B. Robustness of an Input Shaper

As mentioned earlier, the input shaper variables, i.e. am-
plitudes and time locations (instants) of the impulses are
functions of natural frequencies and damping ratios of the
physical system. The success of input shaping technique
depends purely on the accuracy of the mathematical model
of the physical system. Due to parametric uncertainties and
modeling inaccuracies, deriving an accurate mathematical
model is quite challenging. In such a scenario, input shaping
will not produce a zero vibration response. The input shaper
can be made insensitive to errors in natural frequencies
of the system by setting ∂V (ωn,ζ)

∂ωn
= 0. Solving for the

shaper parameters after the addition of this constraint results
in a three-impulse sequence, which is also known as Zero
Vibration and Derivative (ZVD) shaper. The ZVD shaper
[16] is given as[ A

t

]
3

=

 1
1+2M+M2

2M
1+2M+M2

M2

1+2M+M2

0 π
ωd

2π
ωd

 . (41)

This shaper is typically used where a fair amount of un-
certainty can not be neglected in the system parameters. It
can be seen that the increase in robustness of ZVD shaper is
earned at the cost of a marginal time penalty, which increases
the time-lag of the system. The length (duration) of the ZVD
shaper is exactly twice that of the ZV shaper.
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