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Abstract—This paper presents dynamic modelling of a also used in [9-11], where balancing of several
spatial multibody system using the equimomental system of mechanisms was carried out.

point-masses which has several advantages, e.g., one needs to . . .
write only the translational equations of motion without the This paper presents the modelling of a spatial

necessity of writing the rotational equations as the point Multibody system using the concept of e_quimomental
masses have no dimension. For this, a rigid body is System of point-masses and the corresponding Decoupled

represented as a set of rigidly connected seven point-masses. Natural Orthogonal Complement (DeNOC) matrices. A set
Accordingly, the velocities of the point-masses are derived as Of seven point-masses, as proposed in [11], was used to
a linear transformation of the joint-rates resulting into a set  define a rigid body moving in the three-dimensional
of three decoupled matrices called the Decoupled Natural Cartesian space. The preference of seven point-masses
Orthogonal Complement (DeNOC) matrices for the point-  over typically used four point-masses [3] is mainly due to
masses. The matrices are then used to form a minimum set the presence of linear set of algebraic equations to find the
of constrained equations of motion from the uncoupled point-masses [11]. The point-mass velocities were then
Newton's equations of linear motion. The methodology is expressed as a linear transformation of the joint-rates. The
illustrated using a spatial solid pendulum. associated matrix is called the DeNOC matrices for the
point-mass system, similar to the one presented in [12-13]
for a serial-chain system. Further the equations of motion
were derived using the Newton's equations of linear
. INTRODUCTION motion only. The methodology is shown by applying it to a
spatial solid pendulum. A similar methodology was
g{esented in [14] for a planar system.

Keywords—Dynamics, spatial multibody  system,
equimomental system, DeNOC.

Dealing with the dynamics of a spatial multibody
system is always a challenging task. Dynamic equations
motion of the multibody system can be written using The paper is organized as follows: Section |l
various coordinate systems. Absolute coordinate systemntroduces the concept of point-mass system for a rigid-
represents the configuration of a body relative to the globdiody in a spatial motion, whereas Section Il derives the
reference frame. This results in a large number oPeNOC matrices for the point-mass system. Section IV
equations of motion [1]. In joint coordinate system, thepresents dynamic modeling and Section V illustrates the
generalized coordinates are the relative coordinatesiodeling using a spatial pendulum. Finally, Section 6
between the bodies connected by a kinematic pair or joirtoncludes the paper.

[2]. On the other hand, an equimomental system of point
masses is the one which consists of several point massed: EQUIMOMENTAL SYSTEM OFSEVEN POINT-MASSES
whose total mass, overall mass-center location and the cgonsider a rigid body or link, denoted &% link,
moment of inertia are same as that of the original rigidnqying in three-dimensional Cartesian space. The rigid
body [3-4]. Such representation has_several advant_agq k is dynamically represented as a set of rigidly
For example, one needs to deal with the translationglynnected seven point-masses, as proposed in [10-11]. it is
equations of motion only, as the point masses have Nghoyn in the Fig.1. To avoid the coincidence of any two

dimension. Besides, it is more convenient to perform . . .
optimum design of the shapes of the bodies forming thBOINtS, the point-masse¥ are located at the vertices of a

overall multibody system, and its balancing. Theseparallelepiped, whose center is located at the or@jin

advantages have motivated the researchers to use &Q/ . .
concept of “Natural” coordinates”, as presented in [5] an Fich has sidegn,, 2y , &, that are parallel to the axes

others. In [6] point coordinates replaced the rigid bodyof the body-fixed fram® ,; X;,,Y;.1Z,.;- The two systems
and the equations of motion were derived in jointof rigid-body and seven point-mass system are
coordinates using the velocity transformation matrix. In [7-equimomental if the following conditions are satisfied:

8] point coordinates is used to represent the rigid body and

linear and angular momentum concept applied for MMt Mot Mm .m o= 1
dynamical formulation. The point mass representation was MMz +Ma* MatMstMermo=m (1)
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(M +Ma=Mz—M,—Ms+me+tm)h, =mXx 2 N = (i iy +1i2) 1 (2m) (11)
(m1+m2+m3+m4_m5_m6_m 7)hy:myi (3) hiz(li,xx_li,yy+li,zz)/(2m) (12)

(My—My—Mz+m,+ms+me—m)h, =m3z 4) R = (1 +liy — 1 )/ (2m) (13)

(Mot Mz =Ma=Ma*Ms=Me™M Al =liy (5) Note that the sum of any two moment of inertias to be
greater than the third one [3]. Henlag,hy, andh, will
never have imaginary values. Then (2-7) becomes linear in
My, ....m;; and solve for them. This will be carried out in
Section V.

(My—Mp—mg+m,—mg—metmhh, =1,  (6)
(M —My+Mg—Mm,—Mms+mg—m)hh, =1 5 (7

7 I1. DENOCMATRICES FOR THEPOINT-MASS SYSTEM

(2 +h2) =1 8
= My (hy +02) = o ® Consider thé"rigid link in spatial motion. The link is

represented as a set of rigidly connected seven point-
. masses shown in Fig. 1. The velocities of the point-masses
m; (rﬁ +h§) =y (9) ofthe i"link is derived in general form from the velocity
=1 of the origin G of the link as

j

i=

’ 2 Loy vy =Vt xd
;mj (hx + hy) - Ii,zz (10) : (14_20)
Viy =V, to, xd;,
In (1-10), mis mass, (X,Y;,Z)is mass-center

location, (Ii,xxili,yylli,zz)are the moment of inertia, and wherewm; and v; are the angular velocity and linear

velocity of the origin O, of the i link, respectively,

li + livzo li ) are the product of inertia of the link at
( LY 20) P whereas the vectod; =a +r;, for j=1,...,7, denotes

hand. The mass-center and the inertia tensor are referred in - 0 " _
the body-fixed frame denoted @s; X;,,Y,,.Z.,- Equation  the position of thej™ point-mass of the™ body from its
in (1) ensures the mass of the equimomental system @iginO,. Vector a is the link length vector of the"

same as that of the rigid body, whereas those in  (2-4) 4y ie. the vector representing the positio from
represent the same mass-center locations, and in (5-1 S) y. 1€ P 9 P Ot

ensure the same inertia tensors about @ijnt Note that O, , whereas vectdyj, ] =1,...,7, is the position of thg™

(2-10) are nonlinear in parametény, hx,hy andh,. The point-mass fron®,,, . For a system of seven point-masses,

: _ their velocities are given by (14-20), which can be
parameteré’]x,f‘qy andh, were found separately using (8 expressed in a compact form as

10), as proposed in [10-11]. This is done in the following
way: v, =Dt, (21)

whereV, is the 21-dimensional vector of point-mass
velocities, andD, is the 2Xk6 point-mass matrix defined as

mp (hL\‘-‘h[;\'t_hzz) _dil x]1 1
— . : : -
1)1,],_(‘1%,119‘,1112) D, . : " 1 (22)
. E; Xia v
n:'ln (hys=hy —=hy,
° h

i

ms (31

o

In (22), d; x1,for j =1,...,7, is the ¥3 cross-product
e ;‘z;g('h:,—lfq,lfu) tensor  associated with  the veaﬂgr ie.,

(d; x1)x=d; xx, for any 3-dimensional Cartesian vector
X . Moreover, the termis the 3x3 identity matrix, ang|
Fig. 1. Seven point-mass system is defined as the twist of thé"body [11, 13]. For a rigid
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body moving in the three-dimensional Cartesian space, th@otion propagation vector. The expressions for tké 6

6-dimensional twist is defined as matrix,A, ;_,, and the 6-dimensional vectprare given by
.
QE{'} (23) 1 o e
V. A . = n. ="
! ii-1 a”_lxl 1 1 p| 0 (29)

wherew, andv, are the 3-dimensional vectors of angular

velocity and linear velocity of the origin of th&' body, _ . . -
i.e., O, respectively. If the rigid bodies are coupled with Symmetric matrixa,;_, x1. Note here that if the joints are

the help of a single-degree-of-freedom (DoF) joints, say, #aving more DoF, the joint-motion propagation vector
revolute and prismatic, the twists of all rigid bodies in thebecomes a matrix whose columns are corresponding to the
system represented as a generalized twist, i.eQOF of the joint at hand. For a 3-DoF spherical joint,
illustration will be given in Section V.

in which a;_, =—a_, is the vector associated to the skew-

t=[t] - t:]Tcan be written as

. . . . 9T
t=N9,Wher695[6& Hn] (24) IV. DYNAMIC MODELLING

The equations of motion for the point-mass system
and the matrixN is referred to as the Natural Orthogonalwere derived using Newton’s equations of linear motion
Complement or NOC of the velocity constraint matrixand the corresponding DeNOC matrices derived in Section
[13]. However, if the bodies or the links are connected|l, The unconstrained Newton’s equations of motion for
with a joint having more than one-DoF joint, say, a 3-DoFthejth point-mass of thigth body are given by

spherical joint, then the scalaéf associated with the'"

joint needs to be replaced with the 3-DoF joint-rate vector.

Now, if a multibc_)qy system has serial—chair_1 wiithrigid wherem) is the mass of thg" point-mass in thé™ body,
bodies, the velocities of its equimomental point-masses can o ) ) )
be expressed as whereas,v; is the acceleration of point-mass, :ﬁipds the

myv; =f;, forj=1,...,7 (30)

force including gravity acting on th& point mass of the

i" body. Equation in (30) can be written for arink

whereVis the 2h-dimensional vector,t is the &-  systemas

dimensional vector of generalized twist, abds 2Inx6n e~

matrix defined as MV = f (31)
In (31), 2hx21n matrix M and the 2f-dimensional

vectorsV andf are defined as follows:

V=Dt (25)

D=diag[D,,...D,] (26)

Combining (24-26), one can write the point-mass
velocities V, in terms of the joint rates, i,ed,, as

M =diag[ml.m1,..m1.m.1] (32a)

LT LT

R . T
v=Ré, whereN =DN andN=N,N, (27) V= [V Vi ¥y (32b)

The matriced\, andN, for one-DOF joints coupling f=[fl .1 nTl-f-HT (32¢)
the bodies are given in [13], which are given by
Now, upon pre-multiplication of the transpose bf

1 o - O pb 0 -~ O (27) to (31) gives the minimal set of constrained equations
N = A, 1 -0 N = 0 p, - O 8 of motion, i.e.,
B I A NV =N'f (33)

Anl An2 1 0 o -.. pn

) ) ) ~ where V=NO+N@. Equations in (33) lead to the set of
Where O is the matrix of zeros whose dimension isindependent equations of motion in generalized

compatible according to the matrix where it appears. Fogoordinates given by

example,O of N, is the &6 matrix of zeros. Similarly, in

N, of (28), Orepresents the 6-dimensional vector of

zeros. Moreoverl denotes the 3x3 identity matrix, and thein which thd is nxn matrices is called the Generalized

6x6 matrices ofNj, i.e., A;;_;, called twist propagation Inertia Matrix (GIM) and Cis the matrix containing

matrix. Finally, the vectors o, i.e., pi, are the joint- convective inertia terms. Moreoveris n-dimensional
vector of torques. The expressionslgE€ andr are given

by

10+Co=r1 (34)
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my, (., h,,—h.)
’ X

my; (b, ~hy,—h,)

mys (R, _h} Jh)

X

Fig. 2. Spatial pendulum with its seven point model. Fig. 3. Spatial pendulum at zero Euler angles

| =N"VMIN : C =N TIVTN;; t=N'F (35) pendulum position for zero EA set.
. . . The coordinates of the point-masses or the component
Note that the expressions in (35) provide the same setf . . .
of final expressions obtained using the Newton-EuleP' V€Ctoryj, for j=1,...,7, calculated using (11-13) in
uncoupled equations of motion and the correspondinthe body-fixed frame are given in Table 1.

DeNOC matrices, as derived in [11,13]. . .
The mass of the point-masses were calculated using (1-
V. ILLUSTRATION: SPATIAL PENDULUM 7) for the following input parameters of the rigid boafy:

Consider a spatial pendulum shown in Fig. 2. The rigij;)Z'S:,Lz k_g,a—lm,filamciter of linkd =.02m, mass gentgr
body of the pendulum is coupled to the fixed-base by scationx=-a/2,y=0,z= 0, and the moment of inertia
spherical joint which has 3-DoF. The pendulum isand the product of inertia, |y = md? /8,
represented by the set of rigidly connected seven point- 2 2 o
masses. The point-masses are located at the vertices ofig =1z =(md”/16)+ (ma“ /3), ly =1y =15 =0
parallelepiped whose center is located at origyof the  kg-n? . Note that the mass-center and the inertia tensor

body-fixed frame, as shown in Fig. 2. For the joint motionwere referred in the body-fixed fraf®eX,Y,Z,. The
of the 3-DOF spherical joint, Euler Angles (EA) can bepoint-masses were then calculated as,

used. Out of 12 possible EA sets to represent a spherical

joint, the ZYZ set was chosen for the purpose of dynamic M =0.628&g ;my; =-0.54%g ;M3 =1.17kg ;
modelling of the spatial pendulum using the system of m,=0kg; m;=1.17kg;m,=-0.54%g;
point-masses. For the ZYZ set, the rotation matrix required m,, = 0.62&g

for several coordinate transformation of matrices and [ '

vector is given from [13] as

CyCOCp —SpSp -CeCOSp - S¢Cpp CepSO A. General Inertia Matrix
Q=| S¢CHCH +CySp -SgCOS+CyCo S¢Sb | (36) The general inertia matrix was derived using the
-S6C¢ SIS ce expression given in (35) as=N"MN , where the 2421

whereS and C stand for the “Sine and “Cosine”, whereas nlass matrix for the seven point-mass system is given as,

@.6,pare the ZYZ Euler angle set. Fig. 3 shows theM =diag[m,...m 1] and N=DN,Ngy,where the

TABLE I. COMPONENT OF VECTORI1j IN BODY-FIXED FRAME, LE., O, X,Y,Z 5

g a2 Tag T agl 150 160 17

Along X, | h, h, -h, -h, -h, h, h,
AongY, | hy hy, hy hy -Hh, H, H,
AongZ, | h, -h, -h, h, h, h, +h,
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21x6 point-mass matr0, the 66 matrix N, , and the  spatial pendulum represented @g with the rates of the

6x3 matrix N, for the 3-DoF spherical joint, are given by . L T
ZYZ Euler angles represented 8l = [qo 6 ¢] ,i.e.,

-d,x1 1 10 L )
= : - = . = 1 =
D=| SN, '[o J,Nd {o} 37) o, =L0, (38a)
—d,x1 1 where the 83 matrixL, has the following representation
[13]:
where the 3-dimensional vectors[dy;],, for 0 -Sp SHC
j =1,---,7 in body-fixed frame is given as L,=|0 Cp SOSp (38b)
T 1 0 céo
[diy], = |:a1+ he a;+h, a;+ th ;
T . .
[dy,],= [aﬁ h, a,+ hy a,- hz:l : B. Convective Inertia terms

The convective inertia terms were calculated using (35)
as, C=N"MN,wheref = DN,N +DN,N +DN, N in
which the elements @ were calculated as
[éllj]1 Elej] 2, and N, is the &6 matrix of zeros. The

matrix N has the following expression:

N
[d13]25|:a1_hx a,thy a1_th;

[dl4]25|:al_hx a;+hy a1+hz]T;
[dil,=[a,~h, a~-h, aﬁhz]Ti NdE{Ll} (39)

.
[d16]25|:a1+hx a1_hy a1"'hz] ;
C. Generalized forces
T i i
[d17]25|:a1+hx a-h, al_hz:| The generalized forces were calculated using (35) as

. 1=N'f, wherdf includes externally applied forces and
In case these vectors need to be represented in basgose due to gravity acting at each point-mass. The

frame, they can be calculated[@dg]; = dy] 5, where  expression of force is given bly=fE +f in which the
the matrixQ is given by (36). The matriceésandOin  21-dimensional vectof "andf © are as follows:

(37) are the 83 identity and zero matrices, whereas matrix £ T G T
L, is 3x3 matrix associated with the angular velocity of the f==[0,..0] andf® =[mg,...mAg]  (40)

T T T T T T
— phi : : : : — phi

1.5 T ———— === theta ] : : : : : == -theta
i sai F') SRR R b e d b sai H

joint angle in rad
joint rate in rad/sec

Time in sec Time in sec

(a) Joint angles (b) Joint rates

Fig. 4.Simulation corresponding to planar behavior
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(b) Joint rates

Fig.5. Simulation for spatial behavior

'_'phl
==-theta |
1or sal I
o
o b
= 3
£ ©
@ =
2 £
c Q
© ®
E =
(=] £
= S.
) I ST S SN S S N S Al
0 1 2 3 4 5 6 7 8 9 10 0 1
Time in sec
(a) Joint angles
- T. T
where, g=[0 0 -g] ;0=[0 0 (] Hence,

1=N"fE+N"fC =1, +1C.

D. Smulation

Simulation was performed using (35) and
corresponding expressions derived in Section V. The inp
parameters in terms of the point-masses were calculated in
the beginning of Section V. Since the free-fall simulation
was obtained, no input torque, i.e;,= 0, was considered.

The acceleration due gravity is g=9.81 M/Ehe initial
joint angles in terms of the ZYZ Euler angles were taken

as =90 ,8=90 p= 90, whereas joint rates were taken [2]

as zeros, i.e.,él(O):O. Fig. 4 shows the simulation

results. Since the configuration corresponds to a planar
solid pendulum, as analyzed in [13], the results show exa
match, thus, apparently validating the algorithm based o
the point-mass system. To study the spatial behavio ,]
another set of initial conditions were considered, whict15]

are: =90 ,0=45 p= 45 whereas joint rates were

taken as zeros, i.e.él(O):l m/s. The resulting plots are

shown in Fig. 5 indicating clearly spatial behavior of thel6]
pendulum.

(7]
VI

In this paper, dynamic modelling methodology for [8]
spatial multibody systems is presented using the
equimomental system of point-masses, where each body is
represented as a set of rigidly connected seven poingj
masses. The corresponding point-mass matrix and the
DeNOC matrices were derived from the velocities of the
point-masses. A numerical example is provided with d10l
spatial pendulum where the joint motion has 3-DoF. The
derived matrices were used to form the minimal set o
constrained equations of motion from the unconstraine
Newton's equations of linear motion. Simulation of the;,
spatial pendulum was performed using MATLAB's
“ode45” function.

CONCLUSIONS

1]

(13]
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