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Abstract—This paper presents dynamic modelling of a 

spatial multibody system using the equimomental system of 
point-masses which has several advantages, e.g., one needs to 
write only the translational equations of motion without the 
necessity of writing the rotational equations as the point 
masses have no dimension. For this, a rigid body is 
represented as a set of rigidly connected seven point-masses. 
Accordingly, the velocities of the point-masses are derived as 
a linear transformation of the joint-rates resulting into a set 
of three decoupled matrices called the Decoupled Natural 
Orthogonal Complement (DeNOC) matrices for the point-
masses. The matrices are then used to form a minimum set 
of constrained equations of motion from the uncoupled 
Newton’s equations of linear motion. The methodology is 
illustrated using a spatial solid pendulum. 

Keywords—Dynamics, spatial multibody system, 
equimomental system, DeNOC. 

I.  INTRODUCTION 

Dealing with the dynamics of a spatial multibody 
system is always a challenging task. Dynamic equations of 
motion of the multibody system can be written using 
various coordinate systems. Absolute coordinate system 
represents the configuration of a body relative to the global 
reference frame. This results in a large number of 
equations of motion [1]. In joint coordinate system, the 
generalized coordinates are the relative coordinates 
between the bodies connected by a kinematic pair or joint 
[2]. On the other hand, an equimomental system of point 
masses is the one which consists of several point masses 
whose total mass, overall mass-center location and the 
moment of inertia are same as that of the original rigid 
body [3-4]. Such representation has several advantages. 
For example, one needs to deal with the translational 
equations of motion only, as the point masses have no 
dimension. Besides, it is more convenient to perform 
optimum design of the shapes of the bodies forming the 
overall multibody system, and its balancing. These 
advantages have motivated the researchers to use the 
concept of “Natural” coordinates”, as presented in [5] and 
others.  In [6] point coordinates replaced the rigid body 
and the equations of motion were derived in joint 
coordinates using the velocity transformation matrix. In [7-
8] point coordinates is used to represent the rigid body and 
linear and angular momentum concept applied for 
dynamical formulation. The point mass representation was 

also used in [9-11], where balancing of several 
mechanisms was carried out. 

This paper presents the modelling of a spatial 
multibody system using the concept of equimomental 
system of point-masses and the corresponding Decoupled 
Natural Orthogonal Complement (DeNOC) matrices. A set 
of seven point-masses, as proposed in [11], was used to 
define a rigid body moving in the three-dimensional 
Cartesian space. The preference of seven point-masses 
over typically used four point-masses [3] is mainly due to 
the presence of linear set of algebraic equations to find the 
point-masses [11]. The point-mass velocities were then 
expressed as a linear transformation of the joint-rates. The 
associated matrix is called the DeNOC matrices for the 
point-mass system, similar to the one presented in [12-13] 
for a serial-chain system. Further the equations of motion 
were derived using the Newton’s equations of linear 
motion only. The methodology is shown by applying it to a 
spatial solid pendulum. A similar methodology was 
presented in [14] for a planar system. 

The paper is organized as follows: Section II 
introduces the concept of point-mass system for a rigid-
body in a spatial motion, whereas Section III derives the 
DeNOC matrices for the point-mass system. Section IV 
presents dynamic modeling and Section V illustrates the 
modeling using a spatial pendulum. Finally, Section 6 
concludes the paper. 

II. EQUIMOMENTAL SYSTEM OF SEVEN POINT-MASSES 

Consider a rigid body or link, denoted as thi  link, 
moving in three-dimensional Cartesian space. The rigid 
link is dynamically represented as a set of rigidly 
connected seven point-masses, as proposed in [10-11]. It is 
shown in the Fig.1. To avoid the coincidence of any two 

points, the point-masses ijm  are located at the vertices of a 

parallelepiped, whose center is located at the origin 1iO +  

which has sides2 ,2 ,2ix iy izh h h that are parallel to the axes 

of the body-fixed frame 1 1 1 1i i i iO X Y Z+ + + + . The two systems 
of rigid-body and seven point-mass system are 
equimomental if the following conditions are satisfied: 

 1 2 3 4 5 6 7i i i i i i i im m m m m m m m+ + + + + + =   (1) 
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1 2 3 4 5 6 7( )i i i i i i i ix i im m m m m m m h m x+ − − − + + =  (2) 

1 2 3 4 5 6 7( )i i i i i i i iy i im m m m m m m h m y+ + + − − − =  (3) 

1 2 3 4 5 6 7( )i i i i i i i iz i im m m m m m m h m z− − + + + − =  (4) 

1 2 3 4 5 6 7 ,( )i i i i i i i ix iy i xym m m m m m m h h I+ − − + − − =  (5) 

1 2 3 4 5 6 7 ,( )i i i i i i i iy iz i yzm m m m m m m h h I− − + − − + =  (6) 

1 2 3 4 5 6 7 ,( )i i i i i i i iz ix i zxm m m m m m m h h I− + − − + − =  (7) 

 
7

2 2
,

1

( )ij iy iz i xx
j

m h h I
=

+ =∑  (8) 

 
7

2 2
,

1

( )ij iz ix i yy
j

m h h I
=

+ =∑  (9) 

 
7

2 2
,

1

( )ij ix iy i zz
j

m h h I
=

+ =∑  (10) 

In (1-10), im is mass, ( , , )i i ix y z is mass-center 

location, , , ,( , , )i xx i yy i zzI I I are the moment of inertia, and 

, , ,( , , )i xy i yz i zxI I I are the product of inertia of the link at 

hand. The mass-center and the inertia tensor are referred in 
the body-fixed frame denoted as1 1 1 1i i i iO X Y Z+ + + + . Equation 
in (1) ensures the mass of the equimomental system is 
same as that of the rigid body, whereas those in  (2-4) 
represent the same mass-center locations, and in (5-10) 
ensure the same inertia tensors about point1iO + . Note that 

(2-10) are nonlinear in parameters,, ,  and ij ix iy izm h h h . The 

parameters ,  and ix iy izh h h  were found separately using (8-

10), as proposed in [10-11]. This is done in the following 
way: 

 

 2
, , ,( ) / (2 )ix i xx i yy i zz ih I I I m= − + +  (11) 

 2
, , ,( ) / (2 )iy i xx i yy i zz ih I I I m= − +  (12) 

 2
, , ,( ) / (2 )iz i xx i yy i zz ih I I I m= + −  (13) 

Note that the sum of any two moment of inertias to be 

greater than the third one [3]. Hence,,  and ix iy izh h h will 

never have imaginary values. Then (2-7) becomes linear in 

1 17,...,im m  and solve for them. This will be carried out in 
Section V.  

III.  DENOC MATRICES FOR THE POINT-MASS SYSTEM  

Consider thethi rigid link in spatial motion. The link is 
represented as a set of rigidly connected seven point-
masses shown in Fig. 1. The velocities of the point-masses 

of the thi link is derived in general form from the velocity 
of the origin iO of the link as 

 
1 1

7 7

i i i i

i i i i

+ ×

+ ×

v = v ω d

v = v ω d

⋮   (14-20) 

 
where iω and iv are the angular velocity and linear 

velocity of the origin iO  of the thi link, respectively, 

whereas the vector ij i ij= +d a r , for 1, ,7j = ⋯ , denotes 

the position of the thj  point-mass of the thi  body from its 

origin iO . Vector ia is the link length vector of the thi

body, i.e., the vector representing the position of 1iO + from

iO , whereas vector , 1,...,7ij j =r , is the position of the thj  

point-mass from 1iO + . For a system of seven point-masses, 
their velocities are given by (14-20), which can be 
expressed in a compact form as 

 i i iv = D tɶ  (21) 

where ivɶ is the 21-dimensional vector of point-mass 

velocities, and iD is the 21×6 point-mass matrix defined as 

 
1

7

i

i

i

− × 
 ≡  
 − × 

d 1 1

D

d 1 1

⋮ ⋮  (22)

  

In (22), ,ij ×d 1 for 1,...,7j = , is the 3×3 cross-product 

tensor associated with the vectorijd , i.e., 

( )ij ij× = ×d 1 x d x , for any 3-dimensional Cartesian vector 

x . Moreover, the term1 is the 3×3 identity matrix, and it

is defined as the twist of the thi body [11, 13]. For a rigid 
 

Fig. 1. Seven point-mass system 
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body moving in the three-dimensional Cartesian space, the 
6-dimensional twist is defined as 

 

i
i

i

 
≡  
 

ω

t
v   

(23) 

where  and i iω v are the 3-dimensional vectors of angular 

velocity and linear velocity of the origin of the thi body, 
i.e., iO , respectively. If the rigid bodies are coupled with 
the help of a single-degree-of-freedom (DoF) joints, say, a 
revolute and prismatic, the twists of all rigid bodies in the 
system represented as a generalized twist, i.e., 

1

TT T
n ≡  t t t⋯ can be written as 

 =t Nθɺ , where 1
T

nθ θ ≡  θɺ ɺ ɺ⋯
 

(24) 

and the matrix N is referred to as the Natural Orthogonal 
Complement or NOC of the velocity constraint matrix 
[13]. However, if the bodies or the links are connected 
with a joint having more than one-DoF joint, say, a 3-DoF 

spherical joint, then the scalar  iθɺ  associated with the thi  
joint needs to be replaced with the 3-DoF joint-rate vector. 
Now, if a multibody system has serial-chain with n rigid 
bodies, the velocities of its equimomental point-masses can 
be expressed as 

 v = Dtɶ  (25) 

wherevɶ is the 21n-dimensional vector, t  is the 6n-
dimensional vector of generalized twist, and D is 21n×6n 
matrix defined as 

 
[ ]1. ,..., ndiag≡D D D  (26) 

Combining (24-26), one can write the point-mass 
velocities vɶ , in terms of the joint rates, i,e., θɺ , as 

 =v Nθɺɶɶ , where ≡N DNɶ  and l d≡N N N  (27) 

The matrices  and l dN N for one-DOF joints coupling 
the bodies are given in [13], which are given by 

 

1

21 2

1 2

;  l d

n n n

   
   
   ≡ ≡
   
   
   

1 O O p 0 0

A 1 O 0 p 0
N N

A A 1 0 0 p

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

(28) 

Where O is the matrix of zeros whose dimension is 
compatible according to the matrix where it appears. For 
example, O of lN  is the 6×6 matrix of zeros. Similarly, in

dN  of (28), 0 represents the 6-dimensional vector of 
zeros. Moreover, 1 denotes the 3×3 identity matrix, and the 
6×6 matrices of Nl, i.e., , 1i i−A , called  twist propagation 

matrix. Finally, the vectors of Nd, i.e., pi, are the joint-

motion propagation vector. The expressions for the 6×6 
matrix, , 1i i−A , and the 6-dimensional vector ip are given by 

 , 1
, 1 1i i

i i
−

−

 
≡  × 

1
A

a 1

ΟΟΟΟ
; i

i

 
≡  
 

e
p

0
 (29) 

in which , 1 1i i i− −= −a a  is the vector associated to the skew-

symmetric matrix , 1i i− ×a 1. Note here that if the joints are 

having more DoF, the joint-motion propagation vector 
becomes a matrix whose columns are corresponding to the 
DoF of the joint at hand. For a 3-DoF spherical joint, 
illustration will be given in Section V. 

 

IV.  DYNAMIC MODELLING 

The equations of motion for the point-mass system 
were derived using Newton’s equations of linear motion 
and the corresponding DeNOC matrices derived in Section 
III. The unconstrained Newton’s equations of motion for 
the jth point-mass of the ith body are given by 

 ,  for 1,...,7ij ij ijm j =v = fɺ  (30) 

where ijm is the mass of thethj  point-mass in the thi body, 

whereas, ijvɺ is the acceleration of point-mass, andijf  is the 

force including gravity acting on thethj point mass of the 
thi body. Equation in (30) can be written for an n-link 

system as 

 Mv = fɺ ɶɶ ɶ  (31) 

In (31), 21n×21n matrix Mɶ and the 21n-dimensional 
vectors  and v fɺ ɶɶ  are defined as follows: 

 [ ]11 17 1 7. ... ,..., ...n ndiag m m m m≡M 1 1 1 1ɶ  (32a) 

 11 17 1 7... ,..., ...  
TT T T T

n n =  v v v v vɺɶ ɺ ɺ ɺ ɺ  (32b) 

 11 17 1 7... ,..., ...
TT T T T

n n =  f f f f fɶ

 
(32c) 

Now, upon pre-multiplication of the transpose of Nɶ of 
(27) to (31) gives the minimal set of constrained equations 
of motion, i.e., 

 T T=N Mv N fɺ ɶɶ ɶ ɶɶ  (33) 

where = +v Nθ Nθɺɺ ɺɺ ɺɶ ɶɶ . Equations in (33) lead to the set of 
independent equations of motion in generalized 
coordinates given by 

 + =Iθ Cθ τɺɺ ɺ  (34) 

in which theI is n×n matrices, is called the Generalized 
Inertia Matrix (GIM) and C is the matrix containing 
convective inertia terms. Moreover,τ is n-dimensional 
vector of torques. The expressions of ,  and I C τ are given 
by 
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 ;  ;  T T T≡ ≡ =I N MN C N MN τ N fɺ ɶɶ ɶ ɶ ɶ ɶ ɶ ɶ  (35) 

Note that the expressions in (35) provide the same set 
of final expressions obtained using the Newton-Euler 
uncoupled equations of motion and the corresponding 
DeNOC matrices, as derived in [11,13]. 

V. ILLUSTRATION: SPATIAL PENDULUM 

Consider a spatial pendulum shown in Fig. 2. The rigid 
body of the pendulum is coupled to the fixed-base by a 
spherical joint which has 3-DoF. The pendulum is 
represented by the set of rigidly connected seven point-
masses. The point-masses are located at the vertices of a 
parallelepiped whose center is located at origin 2O of the 
body-fixed frame, as shown in Fig. 2. For the joint motion 
of the 3-DOF spherical joint, Euler Angles (EA) can be 
used. Out of 12 possible EA sets to represent a spherical 
joint, the ZYZ set was chosen for the purpose of dynamic 
modelling of the spatial pendulum using the system of 
point-masses. For the ZYZ set, the rotation matrix required 
for several coordinate transformation of matrices and 
vector is given from [13] as 

 
C C C S S C C S S C C S

S C C C S S C S C C S S

S C S S C

φ θ ϕ φ ϕ φ θ ϕ φ ϕ φ θ
φ θ ϕ φ ϕ φ θ ϕ φ ϕ φ θ

θ ϕ θ ϕ θ

− − − 
 ≡ + − + 
 − 

Q (36) 

where S and  C stand for the “Sine and “Cosine”, whereas
, ,φ θ ϕ are the ZYZ Euler angle set. Fig. 3 shows the 

pendulum position for zero EA set. 

The coordinates of the point-masses or the component 

of vector 1jr , for 1,...,7j = , calculated using (11-13) in 

the body-fixed frame are given in Table 1. 

The mass of the point-masses were calculated using (1-
7) for the following input parameters of the rigid body:m
=2.512 kg, a =1m, diameter of link, d =.02m, mass center 
location, / 2, 0, 0x a y z= − = = , and the moment of inertia 

and the product of inertia, 2 / 8,xxI md=
2 2( /16) ( / 3)yy zzI I md ma= = + ,       0xy yz zxI I I= = =

kg-m2 . Note that the mass-center and the inertia tensor 
were referred in the body-fixed frame2 2 2 2O X Y Z . The 
point-masses were then calculated as, 

11 0.628m kg= ; 12 0.543m kg= − ; 13 1.171m kg= ;

14 0m kg= ; 15 1.171m kg= ; 16 0.543m kg= − ;

17 0.628m kg= . 

 

A. General Inertia Matrix 

The general inertia matrix was derived using the 
expression given in (35) as, T≡I N MNɶ ɶ ɶ , where the 21×21 
mass matrix for the seven point-mass system is given as, 

[ ]11 17. ,...,diag m m≡M 1 1ɶ and  ,l d≡N DN Nɶ where the 

 
Fig. 2. Spatial pendulum with its seven point model.  

 

 
 

Fig. 3. Spatial pendulum at zero Euler angles   

 

TABLE I.  COMPONENT OF VECTOR 1jr IN BODY-FIXED FRAME, I.E., 2 2 2 2O X Y Z  

 1 1 1 2 1 3 1 4 1 5 1 6 1 7           r r r r r r r  

2

2

2

 X

 Y

 Z

Along

Along

Along

 

     -   -   -        

           -  -   -

  -   -             -

x x x x x x x

y y y y y y y

z z z z z z z

h h h h h h h

h h h h h h h

h h h h h h h
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21×6 point-mass matrix D , the 6×6 matrix lN , and the 

6×3 matrix dN  for the 3-DoF spherical joint, are given by 

 
11

1

17

; ;l d

− × 
    ≡ ≡ ≡    
    − × 

d 1 1
1 O L

D N N
O 1 O

d 1 1

⋮ ⋮   (37) 

where the 3-dimensional vectors 1 2[ ]jd , for 

1, ,7j = ⋯  in body-fixed frame is given as  

11 2 1 1 1[ ]
T

x y za h a h a h ≡ + + + d ; 

12 2 1 1 1[ ]
T

x y za h a h a h ≡ + + − d ; 

13 2 1 1 1[ ]
T

x y za h a h a h ≡ − + − d ; 

14 2 1 1 1[ ]
T

x y za h a h a h ≡ − + + d ; 

15 2 1 1 1[ ]
T

x y za h a h a h ≡ − − + d ; 

16 2 1 1 1[ ]
T

x y za h a h a h ≡ + − + d ; 

17 2 1 1 1[ ]
T

x y za h a h a h− ≡ + − d  

In case these vectors need to be represented in base-

frame, they can be calculated as1 1 1 2[ ] [ ]j j≡d Q d , where 

the matrixQ is given by (36). The matrices and 1 O in 
(37) are the 3×3 identity and zero matrices, whereas matrix 

1L is 3×3 matrix associated with the angular velocity of the 

spatial pendulum represented as 1ω  with the rates of the 

ZYZ Euler angles represented as  1
T

φ θ ϕ ≡  θɺ ɺ ɺ ɺ , i.e., 

 1 1 1=ω L θɺ  (38a) 

where the 3×3 matrix L1 has the following representation 
[13]:  

 1

0

0

1 0

S S C

C S S

C

φ θ φ
φ θ φ

θ

− 
 ≡  
  

L  (38b) 

 

B. Convective Inertia terms 

The convective inertia terms were calculated using (35) 

as, ,T≡C N MNɺɶ ɶ ɶ where, l d l d l d≡ + +N DN N DN N DN Nɺɶ ɺ ɺ ɺ in 

which the elements ofDɺ were calculated as

1 1 1 2[ ] [ ]j j≡d Q dɺɺ , and lNɺ is the 6×6 matrix of zeros. The 

matrix dNɺ has the following expression:  

 1
d

 
≡  
 

L
N

O

ɺ

 (39) 

 

C. Generalized forces 

The generalized forces were calculated using (35) as
T=τ N fɶɶ , wherefɶ includes externally applied forces and 

those due to gravity acting at each point-mass. The 

expression of force is given by E G= +f f fɶ in which the 
21-dimensional vector and E Gf f  are as follows: 

 [ ],...,
TE ≡f 0 0 and [ ]11 17,...,

TG m m≡f g g  (40) 

 

      (a)  Joint angles                                                               (b) Joint rates 

Fig. 4.Simulation corresponding to planar behavior 

401



 
Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013 

 
 

where, [ ]0 0 ;
T

g≡ −g [ ]0 0 0
T=0  Hence, 

1
T E T G G≡ + ≡ +τ N f N f τ τ

ɶ ɶ . 

D. Simulation  

Simulation was performed using (35) and the 
corresponding expressions derived in Section V. The input 
parameters in terms of the point-masses were calculated in 
the beginning of Section V. Since the free-fall simulation 
was obtained, no input torque, i.e., 1 =τ 0 , was considered. 
The acceleration due gravity is g=9.81 m/s2. The initial 
joint angles in terms of the ZYZ Euler angles were taken 

as 90 , 90 , 90φ θ ϕ° ° °= = = , whereas joint rates were taken 

as zeros, i.e., 1 (0) =θ 0ɺ . Fig. 4 shows the simulation 
results. Since the configuration corresponds to a planar 
solid pendulum, as analyzed in [13], the results show exact 
match, thus, apparently validating the algorithm based on 
the point-mass system. To study the spatial behavior, 
another set of initial conditions were considered, which 

are: 90 , 45 , 45φ θ ϕ° ° °= = = ,whereas joint rates were 

taken as zeros, i.e., 1 (0)  m/s=θ 1ɺ . The resulting plots are 
shown in Fig. 5 indicating clearly spatial behavior of the 
pendulum. 

 

VI.  CONCLUSIONS 

In this paper, dynamic modelling methodology for 
spatial multibody systems is presented using the 
equimomental system of point-masses, where each body is 
represented as a set of rigidly connected seven point-
masses. The corresponding point-mass matrix and the 
DeNOC matrices were derived from the velocities of the 
point-masses. A numerical example is provided with a 
spatial pendulum where the joint motion has 3-DoF. The 
derived matrices were used to form the minimal set of 
constrained equations of motion from the unconstrained 
Newton’s equations of linear motion. Simulation of the 
spatial pendulum was performed using MATLAB’s 
“ode45” function.  
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