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Abstract— Minimizing the potential energy of statically 
balanced linkage eases the assembly of the balancing springs 
and reduces the loads experienced by the constituent 
members. Current techniques for statically balancing a 
linkage using only springs and no auxiliary bodies have free 
parameters to be chosen by the designer. We present a 
technique that utilizes these free parameters to impose 
additional conditions that make the potential energy not just 
constant in all configurations but also a minimum among all 
possible design alternatives. The conditions required for 
minimum potential energy for a statically balanced lever and 
a statically balanced planar 2-R linkage are derived in this 
paper. These results are then generalized for any planar 
linkage by noting that the lower bound for the balanced 
potential energy is equal to the maximum external work 
among all possible configurations. Two practical examples 
that use Peaucellier-Lipkin and scissors linkages are 
included to exemplify the method. 

Keywords—static balancing; zero-free-length spring; 
preload; potential energy 

I. INTRODUCTION 

Static balancing of a linkage is the addition of 
compensating gravity loads and/or spring loads so that the 
linkage is in static equilibrium in all its configurations; 
i.e., its potential energy is the same in all the 
configurations of the linkage. As shown in Table 1, 
gravity loads acting on a linkage can be balanced by 
adding either gravity loads or spring loads.  

Static balancing of a linkage under gravity loads by the 
addition of compensating gravity loads/counterweights 
(case (a) in Table 1) is well known and has been 
addressed by many researchers (e.g., [1] and [2]). A 
review of these techniques is given in [3].  On the other 
hand, as shown in case (b) in Table 1, using zero-free-
length springs for balancing gravity loads is relatively 
new. Zero-free-length springs are different from the 
normal springs because they have zero length between the 
two connection points when the spring force is zero. 
Practical methods to modify normal springs into zero-
free-length springs have been demonstrated by Herder [4]. 
Static balancing by addition of spring loads can be done 
with or without adding auxiliary bodies, as shown in cases 
(c) and (d) in Table 1. Different methods of balancing 
using springs, which add auxiliary bodies are presented in 
[5], [6], and [7]. Static balancing by adding spring loads 
without any auxiliary bodies is discussed in [8-11].  

TABLE I.  DIFFERENT METHODS TO STATICALLY BALANCE A 
LINKAGE UNDER GRAVITY LOADS (BALANCING GRAVITY LOADS, 
SPRINGS AND AUXILIARY BODIES ARE SHOWN IN GREY COLOR, WHILE 
ORIGINAL LOADS AND BODIES ARE SHOWN IN BLACK) 

Balancing using 
gravity loads 

Balancing using spring loads 

 

(a) 

 
(b) 

(c) With auxiliary 
bodies 

 

(d) Without auxiliary 
bodies 

 

Between the two options of using auxiliary bodies or 
not, static balancing without any auxiliary bodies is 
advantageous as it reduces the number of bodies and 
simplifies the linkage albeit adding extra springs. In 
general, the weight of the auxiliary body is more than that 
of a spring. Hence, the ideal design that does not take into 
account the weight of the balancing entities is likely to be 
closer to reality in practice if auxiliary bodies are avoided. 
Furthermore, the auxiliary bodies might change the 
kinematics of the original mechanism.   

On the other hand, the disadvantage of using only 
springs and no auxiliary bodies is that the spring forces of 
the balancing springs might become very high. These high 
spring forces might require modification of the 
dimensions of the members of the linkage to withstand 
high spring forces. High spring forces may also require 
increased effort during the assembly of the balancing 
springs. Furthermore, the damage caused in the event of 
failure of any of the balancing springs will be more severe 
if the spring forces are high. Therefore, in this paper, we 
present a technique with which balancing spring loads can 
be kept at the theoretical minimum value. Consequently, 
one disadvantage of using only balancing springs is 
overcome as much as it is theoretically possible. 

The balancing technique given in [8], [9], and [11] 
involves spring constants and coordinates of the anchor 
points of the zero-free-length springs required for the 
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perfect static balancing of a given linkage. There are free 
choices among them because the number of parameters 
exceeds the number of equations governing the constant 
potential energy conditions. Thus, extra parameters can be 
chosen in such a way that the potential energy is not just 
constant but also minimum among all possible alternatives 
of the parameters. This enables the designer to reduce the 
balancing spring loads and the loads in the constituent 
members of the balanced linkage. First, we illustrate this 
with the simplest example of a pivoted crank carrying a 
constant load.  

Static balancing of gravity load by a spring load was 
first proposed by Lucien Lacoste [12] for making a 
pendulum of enhanced time period. As shown in Fig. 1, a 
lever under the action of gravity load W  acting at the 

point [ ]0
T

l=p  in the local coordinate system of the 

lever is balanced by a zero-free-length spring of spring 
constant, k . The fixed anchor point of the spring in the 

global reference frame is [ ]0
T

Yb=b  while the anchor 

point on the lever in the local reference frame of the lever 

is [ ]0
T

xa=a . 

The potential energy of the spring-lever system, which 
includes a part that is due to the load (cPE ) and the other 

part that is due to the spring ( sPE ), is given by 

 ( ) ( )( )
( ) ( )

2 2

2 2

sin cos sin
2

sin
2

c s

x x Y

x Y x Y

PE PE PE
k

Wl a a b

k
a b Wl ka b

θ θ θ

θ

= +

= + + −

= + + −

 (1) 

For static balancing, the potential energy given by (1) 
must be independent of the configuration variable, θ . 
This can be achieved by equating the coefficient of sinθ  
term to zero: 

 
0x Y

x Y

Wl ka b
Wl

k
a b

− =

⇒ =  (2) 

The constant potential energy of the statically balanced 
system is then given by 

 ( )2 2

2 2
x Y

x Y
x Y Y x

a bWl Wl
PE a b

a b b a

 
= + = + 

 
 (3) 

 
Fig. 1. Static balancing of lever under gravity load. 

 There are three parameters, namely, k , xa , and Yb , to 

be chosen by the designer here. But there is only one 
equation, i.e., (2) to ensure static balance in all 
configurations. Therefore, there are two free parameters. 
We utilize them to minimize the constant value of the 
potential energy of the balanced system given by (3). On 
partially differentiating the balanced potential energy 
given by (3), with respect to xa  and Yb , we obtain the 

following necessary condition which defines the 
stationary points of PE : 
 x Ya b= ±  (4) 

For checking the sufficient condition, consider the 
Hessian of the potential energy function, ( )PEH , given 

by (3): 

 ( )
3 2 2

2 2 3

1 1

2

1 1

2

Y

x Y x

x

Y x Y

b Wl
Wl

a b a
PE

aWl
Wl

b a b

  − −  
  =   − − 

   

H  (5) 

It may be verified that the determinant of the Hessian for 
both the conditions implied in (4) is zero. 
 det( ( , )) 0x xa a± =H  (6) 

It may also be checked that, at the stationary point 

x Ya b= , the Hessian is positive semi-definite as its 

eigenvalues are: 

 1 0λ =  and 22
4

xa
λ =  (7) 

On the other hand, at the stationary point x Ya b= − , the 

Hessian is negative semi-definite as its eigenvalues are: 

 1 0λ =  and 22
4

xa
λ −=  (8) 

Hence, the minimum value of the constant potential 
energy occurs at the critical point x Ya b=  and this 

minimum potential energy is given by 
 minPE Wl=  (9) 

A surface plot of the potential energy given by (3) as a 
function of xa  and Yb  is shown in Fig. 2. We can see 

from Fig. 2 that the potential energy is minimum for the 
points corresponding to x Ya b= . This corresponds to an 

entire set, which is a valley of minima along the line 

x Ya b=  in the x Ya b−  plane. 

 
Fig. 2. Surface plot of potential energy vs. xa and Yb . 
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It may be noticed that the value of the minimum 
potential energy given by (9) is equal to the maximum 
value of the potential energy due to the gravity load 
among all possible configurations, i.e., 0 00  to 360θ = . 
The potential energy due to the gravity load is maximum 

when 090θ = . In this configuration, the strain energy is 
equal to zero by virtue of (4).  

In fact, the result that minimum balanced potential 
energy being equal to maximum potential energy due to 
the gravity loads is not surprising. This is because making 
strain energy as low as possible is the aim here because 
potential energy due to the loads is what it is for the given 
mechanism dimensions and the load. The lowest possible 
value of the strain energy in this case happens to be zero. 
From the first row of (1), we get 

 s cPE PE PE= −  (10) 

Since, strain energy is always positive, we can infer that 

 
0c

c

PE PE

PE PE

− ≥
⇒ ≥

 (11) 

From (11), we can see that the minimum value of 
potential energy of the system is at best equal to the 
maximum value of the potential energy due to the gravity 
loads. Hence, if the strain energy corresponds to zero in 
the configuration of maximum external work, then the 
constant potential energy obtained is the global minimum 
for the given linkage under gravity loads. We use this as a 
guideline in the generalizations considered in this paper. 
The rest of the paper is organized as follows. 

The method used for minimizing the preload in the 
spring of statically balanced linkage is presented in 
Section 2. The conditions for minimum potential energy 
for a generalized lever and a 2R linkage under gravity 
load are derived in this section. In Section 3, it is shown 
through practical examples of a four-bar linkage and a 
Peaucellier-Lipkin linkage that the method developed in 
Section 2 can be directly used to obtain the balancing 
spring parameters for minimum potential energy of other 
statically balanced linkages.  Static balancing of a scissors 
mechanism using a zero-free-length spring and a finite-
free-length spring is shown in Section 4 along with the 
condition for minimum potential energy. Summarization 
of the method and conclusions are in Section 5. 

II. METHOD FOR MINIMIZING SPRING PRELOAD IN 

STATICALLY BALANCED LINKAGES  

A. Generalized Lever 

In this problem, as can be seen in Fig. 3, there are five 
spring parameters, namely, the spring constant, k ; local 
coordinates of the anchor point on the lever, 

[ ]T
x ya a=a , and global coordinates of the fixed anchor 

point, [ ]X
T

Yb b=b . Let the constant force with respect to 

the global reference frame be [0 ]TW= −f  and its point 
of action in the local coordinate system of the lever be 

[ 0]Tl=p .  

 
Fig. 3. Minimization of the potential energy of a statically balanced lever. 

The potential energy of the system is given by 

 
{ }

2 2 2 2( )
2

( )cos sin

( )sin

s c

x y X Y

x X y Y

x Y y X

PE PE PE

k
a a b b

k a b a b Wl

k a b a b

θ θ
θ

= +

 + + + 
 

= + − − + 
 + − + 
 

 (12) 

 
The potential energy of the system given in (12) can be 

written as a linear combination of the terms involving 
sinθ , cosθ  and 1, where θ  is the angle made by the 
lever with thex -axis. If the coefficients of sinθ  and 
cosθ  terms become equal to zero, then the net potential 
energy becomes invariant to the configuration variable, θ . 
Hence, the conditions required for static balancing of the 
lever are given by 

 0Yx yXa b a b+ =  (13) 

 ( ) 0Yx XyWl k a b a b+ − + =  (14) 

Here, we have parameters (xa , Yb , Xb , Yb , and k ) that 
define the spring and these are governed by two equations, 
(13) and (14). Let us express ya  and k  in terms of the 

other three parameters using (13) and (14). 

 x
y

Y

Xa b
a

b
= −  (15) 

 ( )2 2

Y

x X Y

Wl b
k

a b b
=

+
 (16) 

This gives us the freedom to choose xa , Xb , and Yb  in 
such a way that the system has minimum potential energy. 
In view of (15) and (16), the potential energy of the system 
given by (12) can be simplified as 

 ( )2 2

2 x
x Y

Y

Wl
PE a b

a b
= +  (17) 

which happens to be identical to the expression of potential 
energy in (3). It is worth noting that PE  in (17) does not 
depend on Xb . Furthermore, as in (4) and the subsequent 

discussion, x ya b=  gives a valley of minima of PE  in this 

case too. The minimizing condition given by 
 x Ya b=  (18) 
transforms (15) and (16) to 

 Xya b= −  (19) 
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 ( )2 2
X Y

Wl
k

b b
=

+
 (20) 

Thus, we are still left with two free choices among xa , ya , 

Xb , Yb , and k  and the remaining three can be calculated 
using (18) - (20).  

Equations (18) and (19) can be geometrically 
interpreted as follows. First, it can be noted that the strain 
energy of this system is zero when 90οθ = . As mentioned 
earlier, this is also the configuration with maximum 
potential energy due to the constant load. Thus, at 90οθ = , 
the length of the spring is zero implying that the two 
anchor points of the spring coincide. Consequently, by 
transformation of the coordinates of point a  from the local 
coordinate system of the lever to the global coordinate 
system gives the coordinates of point b . Here, we are free 
to choose the coordinates of point a , since we have two 
free choices. The spring constant can be determined by 
substituting values of a  and b  in the (14). 

Having noted some features of the solution, we attempt 
to generalize this to a 2R linkage and others. 

B. 2R Linkage  

Consider a 2R linkage shown in Fig. 4. Quantities ia , 

ib , ik , if , and ip  denote the same quantities as in the 

generalized lever of Fig. 3 except that now a subscript is 
added to indicate the number i  of the body  starting from 
the fixed pivot. For simplification, first we consider the 
case where the y -coordinate of the point 1p in the local 

reference frame of body 1 to be zero, i.e., the point 1p  lies 

on the line joining the fixed pivot and the joint between 
bodies 1 and 2. Also, 1θ  and 2θ  denote the angle of the 

bodies 1 and 2 with respect to the X -axis of the global 
coordinate system. 

 
Fig. 4. Minimization of the potential energy of a simplified 2R linkage.

 In this example, we need three springs for static 
balancing [9] and since each spring has five parameters, 
we have a total of 15 spring parameters to choose. For 
simplifying the analysis, the coordinates ya  and Xb  of all 

the springs are taken to be equal to zero. This leaves us 
with a total of nine parameters to choose and the potential 
energy of the system is given by (21). We can obtain the 
conditions required for static balancing by equating the 
coefficients of 1sinθ , 2sinθ  and ( )1 2cos θ θ−  to zero. 

Hence, the conditions required for static balancing are 
given by 

 2 2 2 2 2 3 3 3 0x x Y x YW p k a b k a b− − =  (22) 

 2 2 3 3 0x xk a k a+ =  (23) 

 ( )1 1 1 1 1 2 2 2 3 3 0x x Y Y YW p k a b l W k b k b− + − − =  (24) 

As already mentioned, we have nine parameters to choose 
which are governed by three equations, (22-24). So, we 
can express 1k , 2k , and 3k  in terms of the other six 

parameters ( 1xa , 1yb , 2xa , 2yb , 3xa , and 3yb ) using (22-24). 

 
( ) ( )

2 2 2 2 2 3
1 1 2

2 2 3 3 2 3

1
1 1

x Y x Y
x

x Y Y x Y Y

x Y

W p b W p b
W p W l l

a b b a b b
k

a b

 −+ + +  − − =  (25) 

 
( )

2 2
2

2 2 3

x

x Y Y

W p
k

a b b
=

−
 (26) 

 
( )

2 2
3

3 2 3

x

x Y Y

W p
k

a b b

−
=

−
 (27) 

In view of the (25-27), the potential energy of the 
statically balanced 2R linkage is given by 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
1 1

2 2 2 2 2 2
2 2

2 2 2 2 2 3
1 1 2

2 2 3 3 2 3

1 1

2 2 2 2

2 2 3 3 2
3 3

3

2

2 2

x Y

x Y

x Y x Y
x

x Y Y x Y Y

x y

x x

x Y Y x Y
x

Y
Y

PE a

W p b W p b
W p Wl l

a b b a b b

a b
W p W p

a b b a b b

b

a b l a b l

 −+ + +  − − 

− −

= +

+ + + − + +

 (28) 

To minimize the constant value of the potential energy of 
the balanced system given by (28), we partially 
differentiate it with respect to 1xa , 1yb , 2xa , 2yb , 3xa , and 

3yb . This gives us the necessary conditions for minimum 

potential energy. 
 1 1x Ya b=  (29) 

 2 2x Ya b l= −  (30) 

 3 3x Ya b l= −  (31) 

Substitution of the PE -minimizing conditions given by 
(29-31) into (25-27) gives the remaining spring 
parameters required for minimum potential energy. 

 

( ) ( ) ( )
( )
( ) ( ) ( )

( ){ }
2 2 2 2 2 2 2 231 2
1 1 2 2 3 3

1 1 2 1
1 1 1 2 2 3 3 1

2 2 2
2 2 2 3 3 3 2 2 2 3 3 1 2

2 2 2 sinsin
sin

sin cos

x Y x Y x Y

x
s c x Y Y Y

x
x Y x Y x x

kk k
a b a b l a b l

W p W lPE PE PE k a b k lb k lb
W p

k a b k a b k la k la

θθ θθ θ θ

 + + + + + + + 
  += + = + − − − +  +
 + − − + + −
  

 (21)
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( )( )

2 2
2

2 2 3

x

Y Y Y

W p
k

b l b b
=

− −
 (32) 

 
( )( )

2 2
3

3 2 3

x

Y Y Y

W p
k

b l b b

−
=

− −
 (33) 

 
( )1 1 2 2 2 3 3

1
1 1

x Y Y

x Y

W p W l l k b k b
k

a b

+ + − −
=  (34) 

In this case too, as anticipated, the minimum potential 
energy corresponds to zero strain energy in the 
configuration of maximum potential energy due to 
constant loads, i.e., at 1 2 90θ θ= = ° . Thus, at 

1 2 90θ θ= = ° , the length of all the three balancing springs 

are equal to zero implying that ia  coincides with ib  for 

all the balancing springs. Hence, instead of obtaining the 
minimization conditions by partially differentiating (28) 
with respect to the free variables, we can obtain (29-31) 
by choosing any value for 1xa , 2xa , and 3xa  and then at 

1 2 90θ θ= = °  transforming the coordinates of ia  from the 

local coordinate systems of the members to the global 
coordinate system to obtain the coordinates of ib . The 

spring constants can be obtained by substituting values of 

ia  and ib  in  (22-24). 

Now, we drive the conditions for minimum potential 
energy for a 2R linkage when the centre of gravity of 
body 1 does not lie on the line joining the fixed pivot and 
the joint between bodies 1 and 2. This corresponds to a 
general case of 2R linkage without any simplifying 
assumptions as shown in Fig. 5. In this case, minimization 
of potential energy subjected to static balancing 
constraints as done for lever and simplified 2R earlier 
results in long expressions, which are difficult to be 
simplified into closed form solutions. Hence, we attach 
the springs in such a way that their extension is zero in the 
configuration of maximum external work to obtain the 
corresponding spring parameters, because this 
arrangement corresponds to global minimum for the 
potential energy as proved earlier. 

The x -axis of the local coordinate system of the 
second body can be taken as along the line joining its 
centre of gravity and the joint with first body without any 
loss of generality. External work due to the gravity loads 
will be maximum when the second body is at 90° with 
respect to the global coordinate system, i.e., 2 90θ = °  and 

the first body is at the angle, 1θ  which is given by: 

 1 1 1 2
1

1 1
tan x

y

W p W l
W pθ −  +=  

 
 (35) 

 
Fig. 5. General configuration of gravity loaded 2R linkage.  

 In this case also, we need three springs for static 
balancing [9] and so, we have 15 spring parameters to be 
determined. Let us assume the coordinate ya  of all the 

springs as zero. This leaves us with 12 spring parameters 
and the potential energy of the system is given by (36). 
Therefore, the conditions required for static balancing are: 

 2 2 2 2 2 3 3 3 0x x Y x YW p k a b k a b− − =  (37) 

 2 2 2 3 3 3 0x X x Xk a b k a b− − =  (38) 

 2 2 3 3 0x xk a k a+ =  (39) 

 ( )1 1 1 1 1 2 2 2 3 3 0x x Y Y YW p k a b l W k b k b− + − − =  (40) 

 ( )1 1 1 1 1 2 2 3 3 0y x X X XW p k a b l k b k b− + − − =  (41) 

For minimum potential energy, the springs have to be 
attached to the 2R linkage in such a way that the strain 
energy of all the balancing springs are zero in the 
configuration of maximum external work, i.e., when 

2 90θ = °  and the first body is at angle, 1θ  given by (35). 

This can occur only if the anchor points ia  coincide with 

ib  for all the springs in this configuration.  Therefore, 

choosing any value for 1xa , 2xa , and 3xa  and then in the 

configuration corresponding to 1θ  given by (35) and 

2 90θ = ° , transforming the coordinates of  ia  from the 

local coordinate system of the bodies to the global 
coordinate system, we obtain the coordinates of ib . The 

coordinates of ib  obtained are given by 

 1 1 sinY xb a θ=  (42) 

 1 1 cosX xb a θ=  (43) 

 2 3 cosX Xb b l θ= =  (44) 

( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2 2 2 2 2 2 2 2 2 231 2
1 1 1 2 2 2 3 3 3

1 1 1 2 2 3 3 1 2 2 2 3 3 3 2

1 1 1 2 2 3 3 1 2 2 2 3 3 3 2

2 2 3 3 1 2

2 2 2
sin sin

cos cos

cos

x X Y x X Y x X Y

x Y Y Y x Y x Ys c

x X X X x X x X

x x

kk k
a b b a b b l a b b l

k a b k lb k lb k a b k a bPE PE PE
k a b k lb k lb k a b k a b

k la k la

θ θ
θ θ

θ θ

 + + + + + + + + + +

+ − − − + − −= + = 
+ − − − + − −

+ + −

( )1 1 2 1

2 2 2

1 1 1

sin

sin

cos

x

x

y

W p W l

W p

W p

θ
θ
θ


  +     + +  
   +  
  

 (36)
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 2 2 sinY xb a l θ= +  (45) 

 3 3 sinY xb a l θ= +  (46) 

By substituting (42-46) in the static balancing equations 
given by (37-41), we get the spring constants of the 
balancing springs. 

 
( )

2 2
2

2 2 3

x

x x x

W p
k

a a a
=

−
 (47) 

 
( )

2 2
3

3 2 3

x

x x x

W p
k

a a a

−
=

−
 (48) 

 

2 2 2
1 1

2 3
1 2

1 cos

x X
y

x x

x

lW p b
W p

a a
k

a θ

+
=  (49) 

We can reduce the number of balancing springs to two, 
if we equate the spring constant 1k  given by (49) to zero. 

This will reduce the number of free variables to two 
because either 2xa  or 3xa  has to be obtained from the 

following equation. 

 

2 2 2
1 1

2 3
2
1

2 2 2
2 3

1 1

0
cos

x X
y

x x

x

x X
x x

y

lW p b
W p

a a

a

lW p b
a a

W p

θ

+
=

−
⇒ =

 (50) 

For balancing a 2R linkage  shown in Fig. 5 with only two 
springs, the balancing spring parameters have to satisfy 
(44) – (48) and (50).  

It is shown in [9] that if a linkage consists of N  
bodies (without counting the ground body) and with only 
one body pivoted to the ground, then for static balancing, 
we need to attach one spring to the body pivoted to the 
ground and two springs to all the other bodies. Also, these 
springs should satisfy two equations for the body pivoted 
to the ground and four equations each for all the other 
bodies. Therefore, for a linkage consisting of N  bodies, 

we need ( )2 1N −  balancing springs, which are governed 

by ( )4 2N −  balancing equations. Each spring has five 

parameters, therefore for ( )2 1N −  springs, we have 

( )5 2 1N −  parameters. For minimum potential energy of 

the balanced linkage, we have to impose additional 
conditions of zero strain energy for each spring. 
Therefore, further ( )2 1N −  equations will be added. 

Hence, for static balancing with minimum potential 
energy of a linkage with N  bodies, the number of free 

choices are ( )4 2N −  ( )( )5 2 1 (4 2) (2 1)N N N= − − − − − . 

This implies that the designer will have ( )4 2N −  free 

choices even after obtaining minimum potential energy 
for the statically balanced linkage. This is shown in Table 
2 for different values of N . 

TABLE II.  NUMBER OF FREE CHOICES AVAILABLE 
AMONG THE SPRING PARAMETERS FOR A STATICALLY 

BALANCED LINKAGE WITH MINIMUM POTENTIAL ENERGY   

No. of 
bodies 
( N ) 

No. of 
springs 

( 2 1N − )  

No. of spring 
parameters 

( )5 2 1N −  

No. of balancing 
equations 
( 4 2N − ) 

Free 
parameters 
( 4 2N − ) 

1 1 5 2 2 
2 3 15 6 6 

3 5 25 10 10 

4 7 35 14 14 

III.  PRACTICAL EXAMPLES  

A. Four-bar Linkage 

We can obtain the conditions for minimum potential 
energy for a four-bar linkage under gravity loads by 
relaxing one of the joint constraints and considering it as a 
combination of a lever and a 2R linkage. We have derived 
the conditions for minimum potential energy for both the 
lever and the 2R linkage in section 2. Combining these 
with the static balancing conditions, we can carry out the 
static balancing of the four-bar linkage with minimum 
potential energy. The four-bar linkage with the centers of 
gravity and gravity loads acting on each body is shown in 
Fig. 6.  

In Fig. 6, 1W , 2W and 3W are equal to 10, 20 and 10 N 

respectively and 1xp , 1yp , 2xp and 3xp  are 1, 0.5,  2 and 

0.5 m respectively. Relaxing the revolute joint between 
bodies 2 and 3, we consider the bodies 1 and 2 as a 2R 
linkage and body 3 as a lever as shown in Fig. 7. 

For balancing the 2R linkage shown in Fig. 7, we have 
to attach three balancing springs. The spring parameters 
are given by (42–49). As already mentioned in section 3, 
we have three free choices available in this case. Using 
the same notation for spring parameters as in the previous 
section, we assume1 1xa =  m, 2 2xa =  m and 3 2xa = −  m. 

The remaining spring parameters are obtained by entering 
the values of 1xa , 2xa , and 3xa  in (42–49). The values 

obtained for the coordinates of the fixed anchor points and 
spring constants of the balancing springs are: 1 0.124Xb =  

m, 1 0.9923Yb =  m, 2 3 0.1861X Xb b= =  m, 2 3.4884Yb =  

m, 3 0.5116Yb = −  m, 2 5k =  N/m, 3 5k =  N/m, and 

1 17.81k =  N/m.  

 
Fig. 6. Four-bar linkage under gravity loads. 
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Fig. 7. Four-bar linkage broken into a 2R linkage and a lever, which are 
balanced separately. 

 
Now, for balancing body 3 shown in Fig. 7, we have to 

attach one balancing spring and the spring parameters will 
be given by (18-20). In this case, we have two free choice 
and therefore, we assume 4 0.5xa = m and 4 0ya = m. The 

values obtained for the coordinates of the fixed anchor 
point and spring constant of the balancing springs are: 

4 0.5Yb = m, 4 0Xb = m and 4 20k = N/m. Hence, the 

spring parameters obtained above will make the potential 
energy of the given four-bar linkage not just constant but 
also a minimum among all possible such alternatives, 
implying the spring preloads are as low as possible.   

 
B. Peaucellier-Lipkin Linkage 

We now carry out the static balancing of a Peaucellier-
Lipkin linkage as shown in Fig. 8, so that it can be used 
for the effort-less height adjustment of a writing-board 
according to the user’s height. To minimize the effect of 
frictional forces, the Peaucellier-Lipkin linkage is used, 
since it can transform rotary motion into perfect straight 
line motion without using any linear guide ways. Two 
identical Peaucellier-Lipkin linkages, which are mirror 
images of each other, are used for the vertical motion of 
the writing-board. The board is attached at the joint 
between the bodies 6 and 7 as shown in Fig. 9. Static 
balancing is done for the weight of the board as well as 
the self-weight of each body of the linkage. 

Half of the board's weight acting at the joint between 
the bodies 6 and 7 and the self weight of each body of the 
mechanism acting at its centre of gravity is shown in Fig. 
8. The magnitude of the gravity loads acting on the 
mechanism are: 1 6.88W = N, 2 3 11.43W W= = N, 

4 5 4.78W W= = N, 6 7 7.62W W= = N, and 72.03bW =  N. 

Coordinates of the centers of gravity of each body are 
shown in Fig. 9. 

The given linkage can be statically balanced by 
breaking it into two 2R linkages and one 3R linkage. The 
bodies 1, 4, and 5 form the 3R linkage whereas the bodies 
2 and 6 and bodies 3 and 7 form two 2R linkages. To 
reduce the number of balancing springs that have to be 
added, the gravity loads 4W  and 5W  acting at the 

midpoint of bodies 4 and 5 respectively can be transferred 
to the joints at both the ends and can be considered to be 
acting on bodies 1, 2, and 3 as shown in Fig. 10. Hence, 
the 3R linkage can be reduced to a lever under gravity 
load and can be balanced using only one spring. The two 
2R linkages have the same geometry and magnitude of 
gravity loads. Hence, the balancing spring parameters 
calculated for one of them can be used for either of them. 

For the balancing of body 1, we use the conditions 
obtained for the lever given by (18-20). Assuming 

1 0.2xa =  m and 1 0ya =  m, we obtain remaining spring 

parameters as 1 0.2Yb =  m, 1 0Xb = m, and 1 45.88k =  

N/m. Now, for balancing the 2R linkage formed by the 
bodies 2 and 6, we use the conditions obtained for the 2R 
linkage in (29-34). To further reduce the number of 
springs, we can rearrange (24) to write 
 ( )1 1 2 2 2 3 3 1 1 1x Y Y x YW p W l l k b k b k a b+ + − − =  (51) 

 

 
Fig. 8. Peaucellier-Lipkin linkage under gravity loads 

 
Fig. 9. Two identical Peaucellier-Lipkin linkages used for the vertical 
motion of a writing-board. 

 
 
Fig. 10. Peaucellier-Lipkin linkage broken into two identical 2R linkages 
and a lever, which are balanced separately. 
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In (51), if the spring parameters are chosen such that 
the LHS becomes zero, then we can balance the 2R 
linkage using only two springs. By assuming 2 3x xa a= − , 

we obtain the remaining balancing spring parameters as 

2 3 33.02k k= = N/m, 2 3 0.468x xa a= − =  m, 2 1.218Yb =  

m, and 3 0.283Yb =  m. As already mentioned, the spring 

parameters required for balancing the 2R linkage formed 
by the bodies 3 and 7 is the same as obtained above for 
the 2R linkage formed by the bodies 2 and 6. 

IV.  STATICALLY BALANCED SCISSORS MECHANISM 

The techniques given in the current literature [4-11] 
use only zero-free-length springs for static balancing. We 
show that a scissors mechanism under gravity loads can 
be statically balanced using a zero-free-length spring and 
a finite free-length spring. The attachment of the two 
balancing springs is shown in Fig. 11. 

Let the spring constants of the balancing springs be 1k  

and 2k  and the free length be 10l  and 20l . Strain energy 

due to the balancing springs is given by 

 

21
10

22
20

2 2 2 21 2
1 10

2 21 2
2 20 10 20

3
( sin sin )

2 2 2

( cos 0 )
2

sin cos sin
2 2

cos
2 2

s

k a a
PE l

k
a l

k k
a a k al

k k
k al l l

θ θ

θ

θ θ θ

θ

= − −

+ − −

= + −

− + +

 (52) 

Let the mass of each body be denoted by im  where the 

subscript denotes the body i  as shown in Fig. 10. Centre 
of mass is taken as the geometric centre of the bodies. The 
potential energy due to the gravity loads is given by 

 

2 3 5

6 7 8

3 5 62
7 8

3
sin sin sin

2 2 2
3

sin 2 sin 2 sin
2

3 3
sin ( 2 2 )

2 2 2 2

C

a a a
m m m

PE g a
m m a m a

m m mm
ga m m

θ θ θ

θ θ θ

θ

 + + + 
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+ + 
 

= + + + + +

 (53) 

The potential energy expressions due to both spring loads 
and gravity loads ((52) and (53)) can be presented in a 
tabular column as shown in Table 3. 

 
Fig. 11. Attaching two springs on the scissors mechanism for static 
balancing. 

TABLE III.  POTENTIAL ENERGY OF THE GRAVITY LOADS AND THE 
SPRING LOADS ACTING ON THE SCISSORS MECHANISM AS A LINEAR 

COMBINATION OF 2sin θ , 2cos θ , sinθ , cosθ , AND 1. 
Terms Coefficients of SPE  Coefficients of CPE  

2sin θ
 

21

2

k
a  

0 

2cos θ
 

22

2

k
a  

0 

sinθ  
1 10k al−  3 5 62

7 8

3 3
( 2 2 )

2 2 2 2

m m mm
ga m m+ + + + +

cosθ  
2 20k al−  0 

1 
2 21 2
10 202 2

k k
l l+  

0 

For static balancing, the potential energy should be 
invariant to the configuration variable, θ . In table 3, the 
potential energy of both spring and gravity loads is 
expressed as a linear combination of 2sin θ , 2cos θ , 
sinθ , cosθ , and 1. Now, the potential energy becomes 

invariant of θ , only if the coefficients of 2sin θ , 2cos θ , 
sinθ , and cosθ  become equal to zero. If the spring 
constants of the two balancing springs, 1k  and 2k  are 

equal then the coefficients of 2sin θ  and 2cos θ  also 

become equal. Using the identity 2 2sin cos 1θ θ+ = , 
2sin θ  and 2cos θ  can be eliminated from the potential 

energy expression. This gives the first condition for static 
balancing. 
 1 2k k=  (54) 

For eliminating the sinθ  and cosθ  terms, their 
coefficients can be equated to zero, giving the remaining 
two conditions for static balancing. 

 

3 5 62
1 10 7 8

3 5 62
1 10 7 8

3 3
2 2 0

2 2 2 2
3 3

2 2
2 2 2 2

m m mm
k al ga m m

m m mm
k l g m m

 − + + + + + + = 
 
 

⇒ = + + + + + 
 

 (55) 

 2 20

20

0

0

k al

l

=
⇒ =

 (56) 

Since, 2k  and a  cannot be zero, to satisfy (56), 20l  must 

be equal to zero. Hence, spring 2 has to be a zero free 
length spring. On the other hand, 10l  has to be non-zero to 

satisfy (55). This implies, that spring 1 is a finite-free-
length spring. Hence, the conditions given by (54-56) 
statically balance the scissors mechanism with the 
potential energy of the balanced system given by 

 2 21 1
10

2 21
102 2

( )
2

k
a

k k
PE a l l= += +  (57) 

The product of 1k  and 10l  as given by (44) is a constant 

for given gravity loads. Substituting for 1k  in terms of 10l  

in (57) gives 

 2 2
10

10

( )
2

c
PE a l

l
= +  (58) 

Differentiating (58) with respect to 10l  gives the condition 

for minimum potential energy of the system as, 
 10l a=  (59) 
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Fig. 12. Scissors mechanism used for the vertical motion of a projector. 

The statically balanced scissors mechanism is used for 
the effortless height adjustment of a projector. Two 
identical scissors mechanism are used for this purpose. A 
platform is fixed to the body 8 of both the scissors 
mechanism with the projector placed on the platform as 
shown in Fig. 12. Static balancing is done for both the 
weight of the projector and self weight of all the bodies of 
the scissors mechanism. 

 The variation of potential energy of the statically 
balanced scissors mechanism with minimum potential 
energy is shown in Fig. 13. The variation of external work 
due to the gravity loads and strain energy due to the 
balancing springs is also shown. 

 
Fig. 13. Variation of the strain energy, external work, and potential 
energy for a statically balanced scissors mechanism. 

As shown in Fig. 13, minimum potential energy 
corresponds to zero strain energy in the configuration of 
maximum external work. This is consistent with the result 
obtained for different linkages earlier. 

V. SUMMARY AND CONCLUSIONS 

By using the free parameters and other dependent 
balancing variables, we make the potential energy not 
only constant in all configurations but also a minimum 
among all possible design alternatives. The conditions for 
minimum potential energy for a statically balanced lever 
and a statically balanced 2R linkage are obtained. Using 

the conditions derived for lever and 2R linkage, 
minimization conditions for different mechanisms, 
including a four-bar linkage and Peaucellier-Lipkin 
linkage, are obtained and a general method is 
demonstrated. An important observation of this work is 
that the potential energy of the system that corresponds to 
zero strain energy at the configuration of maximum 
external work is the global minimum of the net potential 
energy for a statically balanced linkage. The main 
conclusion of this work is that some free choices remain 
even after minimizing the constant value of the potential 
energy of the balanced linkage. Future work will address 
how we can use the free choices to make the spring 
constants of some springs zero and thereby reduce the 
number of balancing springs. Also to be investigated is 
how the loads in the bodies of the linkage can be reduced 
by judicious choice of the free parameters.  
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