
 
Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013 

 
 

A Study of Mechanical Advantage  
in Compliant Mechanisms  

 

Gautam R. Kumar 
Mechanical Engineering 

Indian Institute of Science 
Bangalore, 560012, India 

gautam.r.kumar@gmail.com  

G. K. Ananthasuresh 
Mechanical Engineering 

Indian Institute of Science 
Bangalore, 560012, India 

suresh@mecheng.iisc.ernet.in 
 
 

Abstract—Understanding mechanical advantage of a 
compliant mechanism is not straightforward for two 
reasons: (i) it uses a part of the input energy in elastic 
deformation and (ii) its kinetoelastic behavior depends on 
the stiffness of the workpiece. In this paper, we study 
mechanical advantage using non-dimensional analysis of 
compliant mechanisms. We use parameterized 
kinetoelastostatic maps that show mechanical advantage 
against a non-dimensional number that captures geometric 
and material properties as well as forces. The maps help 
compare different topologies of compliant mechanisms based 
on mechanical advantage. The maps also help delineate 
kinematic and elastic contributions to mechanical advantage. 
Case studies reveal that while mechanical advantage usually 
increases with increasing external stiffness and slenderness 
ratio, but it decreases with increasing gap between the 
output port and an elastic workpiece. A noteworthy 
observation in this work is that there can be exceptions to 
this general trend and that kinematic and elastic 
contributions can both be positive so that the mechanical 
advantage of a compliant mechanism can exceed that of a 
rigid-body counterpart. This work also revisits the fact that 
it is possible to design a compliant mechanism such that its 
mechanical advantage is not affected by the stiffness of the 
workpiece. 

Keywords—Compliant mechanism, mechanical advantage 

I.  INTRODUCTION 

Compliant mechanisms transmit force, motion, and 
energy by virtue of elastic deformation of their constituent 
members. Therefore, part of the input energy that is used 
to deform elastic members is not available to do useful 
work on a workpiece or to act against an output load. The 
energy deficit between output and input is stored in the 
mechanism as elastic strain energy. Consequently, 
mechanical efficiency—defined as the percentage ratio of 
the output energy to the input energy—is always less than 
100% for compliant mechanisms. Another consequence of 
inevitable strain energy in compliant mechanisms is its 
effect on mechanical advantage ( MA ), which is defined 
as the ratio of the output force to the input force.  

Understanding MA  of compliant mechanisms less 
straightforward as compared to that of rigid-body 
mechanisms. In rigid-body mechanisms, MA  is entirely 
decided by kinematics. In compliant mechanisms, 
kinematics, forces, and elastic deformation contribute to 

MA . It is worth noting that the behavior of a compliant 
mechanism, and hence MA  too, depends on the stiffness 
of the workpiece.  

An excellent introduction to mechanical advantage of 
compliant mechanisms was given by Salamon and Midha 
[1] in 1998. The implication of mechanical advantage in 
the context of design was discussed by Wang [2] in 2009. 
In this paper, we revisit the analysis and interpretation of 
mechanical advantage in compliant mechanisms to 
explain some new features and to present the results using 
non-dimensional maps that help in comparing different 
designs.  

In Section 2, we give an introduction to mechanical 
advantage in compliant mechanisms by following the 
work of Salamon and Midha [1]. In Section 3, we 
consider a simple example to highlight some new features. 
Non-dimensional maps of mechanical advantage are 
presented in Section 4. Section 5 contains a discussion on 
the effect of workpiece stiffness on the mechanical 
advantage of a compliant mechanism and its implications 
in compliant mechanism design. Concluding remarks are 
in Section 6. 

II. MECHANICAL ADVANTAGE OF COMPLIANT 

MECHANISMS 

Salamon and Midha [1] defined three types of MA  for 
compliant mechanisms. These are shown in Table 1. They 
differ from one another based on what quantity is fixed 
and what is varied among input force, output force, and 
output displacement. Even though some variants and 
combinations of these three types of mechanical 
advantage are conceivable, their definitions and 
underlying concepts seem to suffice for most practical 
situations. 

Type 1 MA  is calculated as a function of input force 
for a fixed value of output displacement. This definition is 
useful if the workpiece is assumed to be rigid. The value 
of output displacement would then correspond to the gap 
between the output point and the workpiece before the 
application of the input force. Thus, in elastic deformation 
analysis, one would need to apply the output displacement 
as a specified value (i.e., Dirichlet boundary condition) 
and compute the output reaction. Therefore, this reaction 
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would depend on input force as well as output 
displacement. This naturally leads to Type 2 MA  wherein 
input force is fixed and output displacement is varied. In 
both types, the output reaction force is calculated and the 
resulting value is divided by the input force to obtain MA . 
It is possible to visualize both types of MA  as a single 
surface that is parameterized using input force and output 
displacement.  

TABLE I.  TYPES OF MECHANICA ADVANTAGE IN COMPLIANT 
MECHANISMS 

Type Quantity 
held fixed 

Quantity 
that is 
varied 

Quantity 
to be 
found 

Definition 

1 Output 
displace-
ment 

Input 
force 

Output 
reaction 
force 

Ratio of output 
reaction to 
input force 

2 Input 
force 

Output 
displace-
ment 

Output 
reaction 
force 

Ratio of output 
reaction to 
input force 

3 Output 
force (or 
displace-
ment) 

Stiffness 
of the 
workpiece 

Input 
force 

Ratio of output 
force (or 
reaction) to 
input force 

 

Type 3 MA is useful where the workpiece is modeled 
as a spring. For simplicity, the workpiece is assumed to 
have linear stiffness in [1]. Whether it is linear, nonlinear, 
or zero, the output force and output displacement are 
dependent on each other. Thus, only one of them can be 
specified. The value of the other is then determined by the 
input force and the stiffness of the workpiece. As 
illustrated in [1], MA  of a compliant mechanism can then 
be portrayed in different ways: as a function of input force 
for different value of stiffness, as a function output 
displacement (or output force) for different required 
values of output force (or output displacement), etc.  

The mechanical advantage of Types 1 and 2 are shown 
in figs. 1(a-b) for a typical compliant mechanism [1]. 
Useful insight can be gained by observing the trends in 
MA  of a compliant mechanism. It helps us identify useful 
range of input and output forces as well as output 
displacements at which the mechanism operates well. In 
most cases, MA  is bounded above or below when a 
parameter is varied. This bounding value of MA  can be 
interpreted as the kinematic component while the variable 
component can be attributed to elastic deformation. The 
kinematic component is essentially MA  endowed by the 
inherent geometry of a given configuration of the 
mechanism. It may be recalled that in a rigid-body 
mechanism, MA  is entirely decided by its geometry. In 
fact, MA  is the reciprocal of geometric advantage, GA , 
which is defined as the ratio of output displacement to 
input displacement. 

By denoting the kinematic (or rigid-body) component 
of MA  as rMA  and the elastic (or compliant) component 

as cMA , we write (by following [1]): 

 r cMA MA MA   (1) 

This result can be analytically derived using simple work 
and energy arguments. Imagine that a compliant 
mechanism has a change in strain energy of SE  when it 
moves incrementally from a given configuration to 
another configuration that is very close to it. This change 
in strain energy is equal to the change in work done by the 
input and output forces, as per the principle of virtual 
work1. The first order approximation of the change in 
work, W , for a compliant mechanism with a single 
input and single output is 

 in in out outW F u F u      (2) 

 (a)  

(b)  

Fig. 1 Trends in types 1 and 2 mechanical advantage in compliant 
mechanisms (redrawn after [1]) 

where inF  and outF  are input and output forces, and inu  

and outu  are the corresponding incremental 

displacements when the mechanism changes its 
configuration slightly. We can now write 

 
in in out out

out in
r c

in out in out

SE W F u F u

F u SE
MA MA MA

F u F u

      

 
     

 
 (3) 

where 

out

in

F
MA

F
 = total mechanical advantage (4) 

1in
r

out

u
MA

u GA


 


 = rigid-body component of 

mechanical advantage  (5) 
                                                            

1 The incremental displacement used here can be thought of as the virtual 
displacement, which is arbitrary as long as it is kinematically admissible. 
Using the   symbol instead of the usual   symbol is deliberate 
because it makes it clear how one can use finite element analysis 
software to compute MA  of compliant mechanisms.  
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c
in out

SE
MA

F u


 


 = compliant component of mechanical 

advantage (6) 

Equations (3) and (6) may imply that compliance (i.e., 
elastic deformation) decreases the mechanical advantage 
because cMA  is shown with a negative sign. Thus, this 

simple analysis highlights a seemingly inherent limitation 
of compliant mechanisms in that the mechanical 
advantage is smaller than that of an equivalent rigid-body 
mechanism. But one may quickly notice that cMA  can be 

positive if SE  is negative. We illustrate this in the next 
section with a simple pseudo rigid-body model of a 
compliant mechanism. 

III. ANALYZING RIGID AND COMPLIANT 

COMPONENTS OF MECHANICAL ADVANTAGE 

Consider a compliant mechanism shown in fig. 2(a) 
and its pseudo rigid-body model for the top-left 
symmetric quarter in fig. 2(b). Here, the curved beam is 
represented with its simplified input-output lumped model 
with torsional spring constants 1  and 2  at the two 

revolute joints of a rigid bar of length l ; sliders to 
account for the symmetry; and translational springs 
constants ink  and wk  to represent input-side stiffness and 

workpiece stiffness, respectively. The angle made by the 
rigid bar is denoted with   and this angle in the initial 
configuration is denoted by 0 . 

 
Fig. 2 (a) A compliant mechanism and (b) its lumped input-output 

model for the symmetric upper-right quarter. 

The potential energy PE  of the model in fig. 2(b) can 
be written as 

 

   

   

   

2 2

0 0

2 2

1 0 2 0

0 0

1 1
cos cos sin sin

2 2
1 1

2 2
cos cos sin sin

in w

in out

PE k l l k l l

F l l F l l

   

     

   

   

   

   

(7) 

The force equilibrium equation can be obtained by 
differentiating PE  with respect to  , which is a 
configuration variable of this single degree-of-freedom 
system, and equating it to zero. 

 

   
   

2 2
0 0

1 0 2 0

0

cos cos sin sin sin cos

sin cos 0

in w

in out

d PE

d

k l k l

F l F l


     

       



   

      
  

  (8) 

Upon re-arranging the preceding equation, we can write 
the expression for MA  and split it into its rigid and 
compliant parts: 

   

  

 
       

0 0

1 2 0

2 2
0 0 1 2 0

cos cos sin sin sin cos

cos

tan
cos

tan

cos cos sin sin sin cos

cos

in wout

in in

in

in w

in

r c

k l k lF
MA

F F

F l

MA

k l k l

F l

MA MA MA

     


   





         


   
 

 
 

  

       
 
  

 
      (9) 

By noting that  0sin sinoutu l    , we can cast (9) as 

follows so that the expression for MA  follows the format 
given in (3) 

    
    

     

    

2
0 0

0

2 0 1 2 02
0

0

cos cos sin sin tan
tan

sin sin

sin sin
sin sin

cos
sin sin

in

in

w

in

k l
MA

F l

k l

F l

    


 

     
 


 

  
   

  
   

  
 

 
  

For a small increment of angle   from 0 , i.e., for 

0     , we can approximate two terms in Eq. (10) as 

follows. 

 0 0

0 0

cos cos sin ; and

sin sin cos

   
   
  
  

 (11) 

By using (11) and  0sin sinoutu l    , Eq. (10) can be 

re-written as 

Fin Fin 

Fout 

(a) 

Fin 

Fout 

kw 

kin 
1 

2 

l 

(b) 

 
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 
   

2
0 0

2

0 1 22 2
0

sin cos tan

cos
cos

costan

in

w

in out

k l

k l
MA

F u

  
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


   
          

 
 
 
  

  

  (12) 

It can be seen that it is consistent with (3) because rMA  is 

equal to tan  in this problem, as may be verified from 
fig. 2(b) without including the springs. Thus, by 
comparing (3) and (12), we have 

 

   
2 2 2

0 0 0
2

0 1 2

sin cos tan cos

cos

cos

in wk l k l
SE

   
  



  
    
 
 

(13) 

and therefore, as in Eq. (6), 

 c
in out

SE
MA

F u


 


 (14) 

Now, it can be seen that whenever SE  in Eq. (13) 
becomes negative, we have positive contribution from 

cMA . This analysis illustrates that the mechanical 

advantage of a compliant mechanism can be more than 
that of its rigid-body counterpart. We consider some 
numerical data to show this. 

 Type 3 MA  of the model in fig. 2(b) is shown in fig. 
3. The plot was created for a sample data set shown in 
Table 2. Figure 3 shows that cMA  is positive throughout 

the range of inF . Thus, this simple example illustrates that 

the mechanical advantage of a compliant mechanism can 
be larger than that of its rigid-body counterpart. As noted 
earlier, SE  needs to be negative for this to happen. The 
negativity of SE  requires that the instantaneous 
stiffness of the compliant mechanism be negative. Indeed, 
it is so in this case. Negative stiffness may cause 
instability during the operation of the device but the 
combination with workpiece of positive stiffness may 
compensate for this. 

 As a consequence of the instantaneous negative 
stiffness, another significant difference from the 
mechanical advantage plots given by Salamon and Midha 
[1] can be observed here. For the same numerical data of 
Table 2, we plot the mechanical advantage as a function 
of input force for different values of workpiece stiffness in 
fig. 4. Here, it can be seen that the mechanical advantage 
decreases with increasing workpiece stiffness.   

 Thus, through a simple example, we showed that the 
mechanical advantage of a compliant mechanism can be 
tailored to obtain desired trends. Next, we consider non-

dimensional plots to show trends in mechanical advantage 
of general compliant mechanisms. 

 
Fig. 3 Mechanical advantage and its rigid and compliant parts for 

the model shown in fig. 2(b) 

TABLE II NUMERICAL DATA FOR THE PLOTS SHOWN IN FIG. 3 

Quantity Numerical 
value 

l  0.25 m 

ink  0 N/m 

wk  100 N/m 

1  5 N.m/rad 

2  8 N.m/rad 

0  23.58° 

 
Fig. 4 Mechanical advantage as a function input force for varying 

workpiece stiffness for the model in Fig. 2(b) and numerical data in 
Table II 

IV. NON-DIMENSIONAL PORTRAYAL OF MECHANICAL 

ADVANTAGE 

A simplified lumped model was used in the preceding 
section to put forth some observations. Doing the same 
with a typical compliant mechanism may become 
unwieldy because it will contain too many parameters to 
articulate insights such as the ones described in Sections 2 
and 3. Therefore, we use non-dimensional maps in this 
section. 

Figure 5 shows non-dimensionalized transverse 
displacement midu  of the midpoint of a fixed-fixed beam 
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of length L  under transverse force F  at the midpoint. 
Here, midu L  is shown against a non-dimensional number 

 , which captures force, geometry, and material 

properties as follows. 

 

2Fs

Ebd
 

 (15) 

 

l
s

d


 (16) 

E is Young’s modulus, b and d are the breadth and depth 
of the rectangular cross-section of the beam so that the 
area moment of inertia is given by 3 /12bd  . As discussed 
in [3], the kinetoelastostatic map show in fig. 5 captures 
the complete nonlinear elastostatic behavior of the fixed-
fixed beam under a concentrated load at its midpoint when 
only the displacement of the midpoint is of interest. That 
is, for any values of F , E , L , d , and b , we can quickly 
obtain umid. It is worth noting the limits of non-
dimensional displacement from the figure and the role the 
slenderness ratio plays. In fact, the slenderness ratio s 
parameterizes the map in fig. 5. Details can be found in 
[3, 4]. 

 
Fig. 5 Non-dimensional displacement of the midpoint of a fixed-

fixed beam shown against a non-dimensional number,  .  

The non-dimensional maps of the kind shown in fig. 
5 can be drawn for any compliant mechanism whose 
geometric proportions are fixed at two levels. At one 
level, the lengths of beam segments should retain their 
relative proportions. At another level, independent of the 
first level, proportions of the cross-sectional dimensions 
of the beam segments should also retain their relative 
proportions. Under these conditions, the maps can be 
drawn for any compliant mechanism comprising multiple 
beam segments. In those cases,   is defined using 

average values of the geometric parameters of all the 
beam segments. Similarly, if there are multiple forces, the 
proportions of the magnitudes of forces should be held 
constant and the average value of the forces is to be used 
in  . The same applies to E if the beams segments are 

made of different materials. 

As the mechanical advantage is also a non-
dimensional number, it can be readily plotted against  . 

For the compliant mechanism in fig. 6(a) with its 
dimensions indicated in fig. 6(b), the non-dimensional 
map of mechanical advantage is shown in fig. 7. The data 
for this plot and all that follow from here onwards was 
obtained by performing multiple runs of finite element 
analysis using Abaqus [5]. For creating fig. 7, the non-
dimensional gap (gap divided by L ) is 0.0058, 
slenderness ratio of 170, and workpiece stiffness of 5 N/m 
were used. Here, gap denotes the space between the 
output point and the workpiece when the input force is 
zero. This gap must be closed first by applying some input 
force before mechanical advantage can be defined. The 
non-dimensional gap obtained by dividing by the average 
length is shown in fig. 7. The workpiece stiffness is not 
non-dimensionalized because it is independent of the 
mechanism and different applications may have different 
absolute values of workpiece stiffness. 

(a)  

(b)  

 

Fig. 6 (a) A compliant crimping mechanism, and (b) its dimensions 
in mm 

Much insight can be gleaned from fig. 7. It shows 
that no matter what the overall size of the mechanism is, 
whatever its cross-section dimensions, material, and 
applied force are, it cannot have mechanical advantage 
exceeding 4 when s = 170, g/L = 0.0058, and kw = 5 N/m. 
Thus, the limits of the mechanical advantage of a given 
compliant mechanism (of course, with fixed proportions 
as noted earlier) can be understood from a single non-
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dimensional plot. Furthermore, we can also see that 
maximum MA is possible at 10  . This means that, 

when mechanical advantage is the main criterion, then the 
geometry, material, and forces of a compliant mechanism 
should be chosen so that the value of    is about 10. Even 

when some of the parameters listed in the preceding 
sentence are not at the discretion of the designer, the 
values of the others can be chosen to accommodate the 
required value of  . 

Figures 8(a-c) show the trends in mechanical 
advantage for different values of the gap, slenderness 

 
Fig. 7 Mechanical advantage vs. non-dimensional parameter of the 

mechanism in fig. 6(a) 

(a)  

(b)  

(c)  

Fig. 8 Mechanical advantage for (a) different non-dimensional 
gaps, (b) different slenderness ratios, and (c) different values of 
workpiece stiffness, for the compliant crimper of Fig. (6b) 

ratio, and workpiece stiffness. It can be observed from 
Fig. 8(a) that the mechanical advantage decreases with 
increasing gap. This makes sense because much larger 
input force is needed to close larger gaps. Figure 8(b) 
shows that mechanical advantage increases with 
increasing slenderness ratio. This means that the more 
flexible the mechanism is the more the mechanical 
advantage because large slenderness ratio implies 
enhanced flexibility. Furthermore, from fig. 8(c), we can 
see that mechanical advantage increases with increasing 
workpiece stiffness. It may be recalled from Section 3 that 
this may not always be the case. 

As another example, consider the compliant 
mechanism in fig. 9(a) with its dimensions noted in fig. 
9(b). Figures 10(a-d) illustrate trends in mechanical 
advantage of this mechanism; (a) with zero gap, (b) with 
different gaps. (c) with zero gap but different slenderness 
ratios, and (d) with zero gap and different workpiece 
stiffnesses. 

(a)  

(b)  

Fig. 9 (a) A compliant mechanism and (b) its dimensions 

One more use of the non-dimensional portrayal of 
mechanical advantage is that they help in comparing 
different compliant mechanisms. For instance, even 
though the functionality of mechanisms in figs. 6(a) and 
9(a) is the same, the upper limit of mechanical advantage 
in the first mechanism is twice as much as that of the 
second. It can also be observed that the mechanical 
advantage of the second mechanism is not affected by the 
workpiece stiffness as much as it does in the first 
mechanism. This leads us to study the sensitivity of a 
compliant mechanism to the stiffness of the workpiece. 
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V. SENSITIVITY TO STIFFNESS OF THE WORKPIECE 

Sensitivity index is another significant parameter in 
designing compliant mechanisms. Salamon and Midha [1] 
defined sensitivity index as the sensitivity of mechanism 
performance to the stiffness of the workpiece. By 
minimizing the energy stored in the mechanism during 
deformation, we can reduce the dependence of the 
mechanism on the stiffness of external workpiece. The 
general relation between sensitivity index and MA is as 
follows: 

 

s

k

k
MA MA

s k

 
     (17)

 

where k is the stiffness of the external workpiece and 

sMA  is the bounding value of the mechanical advantage  

(a)  

(b)  

(c)  

(d)  

Fig. 10 The trends in mechanical advantage of the compliant 
mechanism of fig. 9(a).  

vs. workpiece stiffness curve, shown in figs. 11 and 12 for 
constant force for compliant mechanisms in figs. 6a and 
9a, respectively. 

By fitting a curve based on (17) to the plot in fig. 11, 
the value of sensitivity index is found to be 0.48. This 
means that the effect of the stiffness of the external 
workpiece on the total mechanical advantage of the 
mechanism is small. This can be verified by observing fig. 
10(d). The graph is plotted for three different values of 
external workpiece stiffness and we see that mechanical 
advantage is almost the same for all the three cases. Thus 
we can conclude that stiffness of the external workpiece 
has very little effect on the mechanical advantage of that 
mechanism due to sensitivity index being small in 
comparison to the value of k . 

 
Fig. 11 Mechanical advantage vs. workpiece stiffness of the 

mechanism shown in fig. 9a. 

Figure 12 shows the mechanical advantage vs. 
workpiece stiffness variation for a constant input force of 
mechanism in fig. 6a. The value of sensitivity index 
obtained through curve-fitting for this mechanism equal to 
5.12. This means that the external workpiece stiffness has 
significant effect on the total mechanical advantage. 
Observing fig. 8(c), we can notice a noteworthy change of 
mechanical advantage with change in external stiffness 
and thus corroborating the higher value of sensitivity 
index for the mechanism in fig. 6a. 

 
Fig. 12 Mechanical advantage vs. workpiece stiffness of the 

mechanism shown in fig. 6a. 

 

VI. CONCLUSIONS 

In this paper, we revisited the issue of mechanical 
advantage in compliant mechanisms following the work 
of Salamon and Midha [1]. We show two additional 
features that can exist in compliant mechanisms: (i) 
compliant component of the mechanical advantage can be 
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positive and thus making the mechanical advantage of a 
compliant mechanism larger than that of its rigid-body 
counterpart, and (ii) a compliant mechanism may be 
designed so that its mechanical advantage decreases, 
increases, or remains the same with respect to a large 
range of workpiece stiffness. We also presented non-
dimensional portrayal of mechanical advantage so that 
much insight can be gained about the mechanism. 
Furthermore, different compliant mechanisms can be 
easily compared using the non-dimensional plots. Future 
work will focus on using the sensitivity index to design 
compliant mechanisms that not only have large 
mechanical advantage but are also insensitive to 
workpiece stiffness. Thus, we can make compliant 
mechanisms as attractive as rigid-body linkages from the 
viewpoint of mechanical advantage. 
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