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Abstract—In this paper, we formulate an optimization 
problem to synthesize tensegrity structures of desired 
shapes. In particular, we consider class 1 tensegrity where no 
two compression elements have a common vertex, by 
designating all members in the desired shape a priori as 
either a bar in compression or a cable in tension. We solve 
static equilibrium equations at the vertices in the desired 
configuration subject to constraints on force densities, which 
are the variables in the synthesis problem. The reason for 
using the force density, defined as the force per unit length in 
the desired configuration, is twofold: (i) to directly impose 
constraints of positive and negative force densities in tension 
and compression elements, respectively, and (ii) to obtain 
free lengths of all the members using the force densities. We 
use this method to synthesize a previously known semi-
toroidaltensegrity arch with 24 bars and 102 cables and a 
hitherto unknown tensegrity of biconcave shape similar to 
that of a red blood cell comprising 24 bars and 112 cables. 
We also present static analysis of a tensegrity structure by 
minimizing of potential energy with unilateral constraints on 
the lengths of the cables, which cannot take compressive 
loads. We also extend the method to synthesize a tensegrity 
table of desired height and area with three bars and nine 
cables under a predefined load. The prototypes of all three 
synthesized tensegrities are made and tested.  

Keywords—tensegrity;biconcave shape. 

I.  INTRODUCTION 

Tensegrity structures are made of tension and 
compression elements [1]. The tension elements (cables) 
take tensile loads and compressive elements (bars) take 
compressive loads.Tensegrity structures use internal 
preload to assume a stiff and stable equilibrium shape 
under no external loads. Thus, they have applications in 
deployable devices used for example, in space structures 
[2]. Cytoskeleton models based on the concept of 
tensegrity are also used to model the mechanical response 
of biological cells [3]. Tensegrity structures have 
applications in the field of architecture, where different 
types of tensegrity domes and arches are built [4].As the 
large deformations in a tensegrity are controllable, they 
find application in robotic arms [5]. There are different 
classes of tensegrity structures; class-n tensegrity 
structures are structures where ‘n’ bars share a single node 
[1]. We consider class 1 tensegrity structureswith and 
without external loads. 

There are different methods to find the equilibrium 
state attained by atensegrity structure for given 
connectivity and stiffness properties of the constituent 
bars and cables. These methods are generally known as 

form-findingmethods [6]. They are classified into two 
categories: kinematic methods and static methods [6]. 
Some of the kinematic methods of form-finding 
haveanalytical solutions [6]. Such methods are used for 
form-finding of prismatic tensegrities where the cable 
lengths and the polygon face of the tensegrity prism are 
given, using which the lengths of the bars are calculated to 
get a stable tensegrity prism. Other kinematic methods use 
nonlinear programming [7], by posing a constrained 
minimization problem, where connectivity and nodal 
points are known a priori and the lengths of the bars are 
maximized until a stable structure is obtained. The third 
class of kinematic form-finding methodd usesdynamic 
relaxation [8] of different forms by varying the positions 
of the vertices of the system and solving the equilibrium 
equations at each node to find the unbalanced forces 
iteratively. The form is modified using the dynamic 
equations of motion. Although the kinematic methods 
have good convergence properties, they are only effective 
when the number of vertices in the structure is low. 

Static methods of form-finding are of four types.In the 
force density method [9], for given connectivity of a 
tensegrity structure, the force density of each of the 
members is predefined. The nodal point coordinates are 
then calculated for the corresponding force densities that 
satisfy static equilibrium. In the analytical solution 
method [10], stable form of a rotationally symmetric 
tensegrity (e.g. a tensegrity prism) is found. Here, the 
nodal force-balance is used to arrive at the angles 
subtended by the bars for given lengths of cables. In the 
energy method [11], the form of the tensegrity is found for 
which the total potential energy is minimum. Here the 
potential energy of both cables under tension and bars 
under compression are considered. In the reduced co-
ordinate method [12], the bars are considered to be rigid 
and the equilibrium equations pertaining only to the 
cables are formulated with the help of the principle of 
virtual work.  

In all the aforementioned methods, the connectivity of 
the member elements and the stiffness property of the 
materials are given and we find the form that satisfies the 
equilibrium equations. It may be noted that form-finding 
addressed by these methods is a forward problem in the 
sense that the aim is to obtain a stable tensegrity form 
using given number of bars and cables and their 
connectivity and stiffness properties. The inverse problem 
is determining the geometry and force densities to obtain a 
prescribed shape. Form-finding of tensegrity structures 
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with desired shape has been addressed by Masic [13], 
where the material stiffness properties and connectivity of 
the structure are known a priori. The difference between 
the coordinates of the vertices of the equilibrium form of 
the tensegrity and the coordinates of the prescribed 
vertices is minimized. The coordinates of the vertices and 
the force densities are the variables in this problem. This 
is one of few methods that address the inverse or the 
synthesis problem. In this paper, we synthesize a 
tensegrity structure of desired shape, where the nodal 
points known a priori, the connectivity of the elements in 
the tensegrity structure is arrived at by considering the 
Maxwell’s rule for trusses, and we find the stiffness 
properties of bars and cables of the tensegrity structure, 
which give the desired form for the tensegrity structure.  

We synthesize a free-standing tensegrity structure (i.e., 
with no external loads) of desired shape by solving the 
force density method as an optimization problem with 
constraints on the force densities. We synthesize the 
tensegrity structures with external loads, which attain a 
predefined geometric constraint (e.g. height) under the 
application of the load, in two steps. The first step involves 
solving the force densities in an optimization problem to 
get the free-standing tensegrity. The second step involves 
static analysis, where we minimize the potential energyof 
the system under the externally applied loads with a 
reduced coordinate system. We use unilateral constraints 
on the cables in the form of a sigmoid-type function to 
account for the slack condition of the cables under 
compressive loads. We check for the geometric constraint 
and update the tensegrity configuration and repeat the 
above steps until the geometric constraint is satisfied. We 
synthesize different desired shapes such as a semi-toroidal 
arch, biconcave tensegritysimilar to the cytoskeleton of a 
red blood cell, and a table of desired height under the 
application of a prescribed external load.  

II. METHODS 

For a free-standing tensegrity to be in static 
equilibrium, the net forces acting at each vertex should be 
zero. For this, the internal and external forces in the 
member elements are resolved in the three directions and 
the sum of these resolved forces at each vertexis equated 
to zero to get three equilibrium equations at each node. 
The equilibrium equations at vertex 1in Fig. 1 can be 
written as: 
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Fig. 1. A typical compliant mechanism-based cell manipulation 
setup 
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where i jf −  and i jl − are the internal force and length of an 

element connecting vertices i  and j . For ease of 

calculation, we denote  i j
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called the force density, i.e., force per unit length of the 
deformed element. Thus, for the case where external loads 
are absent, we get: 
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When there are n  vertices, there will be 3n  equations 
to be solved in m  unknowns, m  being the number of 
elements connecting  n  vertices. The number of elements 
in a tensegrity structure is selected by using Maxwell’s 
rule [14], which states that the number of elements should 
be at least as many as 3 6n −  for a structure to be just stiff, 
which means that it is statically determinate.  

By Maxwell’s rule it can be also seen that when 
3 6m n> − , the structure will have (3 6)m n− − states 

of self-stress (i.e., pre-stress). Similarly when 3 6m n< −
, the structure will have (3 6)n m− − infinitesimal mode 
(i.e., rigid-body degree of freedom as in mechanisms). A 
structure satisfying Maxwell’s rule and having an 
infinitesimal mode will also have a corresponding state of 
self-stress or prestress. We choose  m  such that we have 
certain number of self-stressed elements in our structure. 
As the tensegrity we are synthesizing is of class 1, no two 
bars will share a common vertex. Hence the number of 
bars in the structure will be / 2n . The rest of the 
elements will constitute the cables of the structure. 

The unknowns in (2) are the force densities

1 2, ,..., mq q q  when we are synthesizing a tensegrity 
structure. The resulting equations can be expressed in 
matrix form with the help of a connectivity matrix C . 
Each row of matrix C  represents the connectivity of the 
elements; each element in a particular row describes 
whether an element of the tensegrity structure is absent or 
an element begins or ends at that particular vertex.C is an 
m n×  sparse matrix with thm row having value 1 at the 
column corresponding to the vertex in which the member 
element emanates and -1 at the column corresponding to 
the node in which the element terminates with other 
elements of the row equal to zero. The sum of a row in 
matrix C should be zero. Thus we have: 
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whereX, Y and Z are 1n×  vectors containing the x, y and 
z coordinates of the nodes respectively. ( )diag CX is an 
m m×  diagonal matrix with vector CX  constituting it’s 
diagonal entries. Equation (3) can be solved using singular 
value decomposition (SVD), but the resulting structure 
will be a tensegrity structure only for particular  C  
matrices where force densities are positive for members 
designated as cables and negative for those designated as 
bars. In other case,s although we may get solutions, it 
would merely result in trusses rather than a tensegrity 
structure. The tensegrity structure we solve for will be a 
linear combination of the solutions we get. Thus, we need 
to give constraints on the values of q  so that the cables 
and bars have positive and negative values for q  to 
ensure the tensegrity condition. So, we pose the problem 
as an optimization problem with constraints on the 
unknownq s.  
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whereN is the set of elements on the structure and barN is 

the set of elements that are bars and cablesN  is the set of 
elements that are cables. After finding the force densities 
of each of the elements of the tensegrity structure we can 
find the free length of the individual elements for given 
cross-sectional area and Young’s modulus of the material 
by fixing any two among the three of free length, cross-
sectional area, and Young’s modulus and finding the third 
one. We solve the minimization problem using the 
fmincon subroutine in MATLAB [15].  

The second type of problem solved involves external 
forces. Here, we aim for the desired shape of the 
tensegrity under specified external load. The synthesis 
procedure for this is explained next. 

Upon getting the desired structure, static analysis is 
done by minimization of potential energy approach. In 
static analysis of the tensegrity structure, we make 
following assumptions: (i) the bars are rigid and do not 
undergo any axial deformations or bending (ii) the strain 
energy of the cables and the work done by the external 

load contribute to the potential energy (iii) the cables can 
only take tensile load and become slack under 
compressive loads. We formulate the static problem as:
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where 
i

K and
0i

L  are the stiffnesses and free lengths of 

cables in the tensegrity structure, 
i

l  is the length of the 

bar, 
i

g  is the generalized coordinates of the tensegrity 

structure in terms of the angles made by the bars with 
datum and final lengths of some cables. ( , )

i
L g l and

,( )
i

ld g  are the final lengths of the cables and the 

displacements of the vertices at which the loads act,  
respectively. Both of them are functions of the generalized 
coordinates and the lengths of the bars. It may be noted 
that S  is a smoothing function used to account for the 
force-free slackness condition of the cables. The symbol 
sp  is the steepness parameter of the smooth function. 

The next step is to find the optimum height of a 
tensegrity structure which on application of a vertical load 
attains a desired shape. Equation (4) cannot be solved for 
all 0ext ≠f  (only a particular combination of the external 
load vector ( extf ) can be solved) to get a tensegrity 
structure of desired shape. So we pose the problem by 
imposing constraints on the force densities.  
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where
0

,
i i

K L and 
i

l  are found from the output of (4) used 

in (6). *h is the desired height the tensegrity structure 
should take under the application of load and a  is the z 
coordinate of certain vertices of the initial free standing 
tensegrity. ( )h a is the height attained by the tensegrity 
structure which is a function of a . This is also an iterative 
process where the a  changes until we get the required 
height. 
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III.  RESULTS 

We use (4) to synthesize a previously known semi-
toroidaltensegrity arch and an unknown tensegrity of 
biconcave shape of the cytoskeleton of a red blood cell. 
The semi-toroidaltensegrity arch (see Fig. 2) [16] is 
synthesized by first fixing the vertices according to the 
height and width of the arch. We take 48 vertices to make 
the outline of the arch. For a class 1 tensegrity there is no 
common vertex for two bars, leading to 24 bars. The 
connectivity is made such that three of the bars and nine 
cables form a unit tensegrity prism. With eight such 
prisms we can make the semi-toroidaltensegrity arch 
having 24 bars and 102 cables. We choose the cross-
sectional areas of the bars and cables and the material 
(Young’s modulus) used to fabricate them. Then, their 
free lengths can be solved using the force densities. We 
solve the optimization problem (4) to get the force 
densities and then use them to calculate the free lengths of 
the individual elements. The given data and results are 
indicated in Tables 1, 2 and 3. The assumed Young’s 
modulus is 9 GPa and 35 GPa; and the area of cross-
section is 3.85e-5 m2 and 7.85e-7 m2 for bars and cables 
respectively. 

Synthesis of the biconcave tensegrity (Fig. 3(a)) 
structure also involves the same steps as for the synthesis 
of the semi-toroidal arch. The nodal points are fixed on the 
surface generated by revolution of a Cassini’s oval [17] 
corresponding to the size and shape of a red blood cell. We 
approximate the biconcave shape with 48 nodal points. We 
synthesize the biconcave tensegrity from three eight bar 
tensegrity prisms. By Maxwell’s rule, the biconcave 
tensegrity to be stiff should have 144 elements. 
Considering the symmetry of the biconcave tensegrity we 
omit six cables and form the biconcave tensegrity with 24 
bars and 112 cables. The connectivity of the elements of 
the biconcave tensegrity is assumed here, keeping in mind 
the ease of fabrication of such a structure and the 
symmetric distribution of the cables and bars. Tables 4 and 
5 contain the data given to the problem. Table 6 contains 
the computed force densities and free lengths by solving 

the optimization problem of (4). Fig. 3(b) shows the 
prototype made of using wooden pencils and hemp thread. 
By fitting a taut triangular plane that replaces two 
tensioned cables and a bar, we can visualize the shape 
better than with the cables and bars. Such a model is 
shown in Fig. 3(c). 

We also synthesized a tensegrity table that attains a 
desired height after application of load. The tensegrity 
table is made with three bars and nine cables and has six 
vertices. The vertices of the table are selected according to 
the area needed for the top of the table. The weight of a 
glass-top is the load. The heights (the z  coordinates) of 
the first three vertices are selected to be as they rest on the 
ground (in x-y plane). The heights of the other three are 
randomly chosen for the initial analysis. The load on the 
table acts vertically down (i.e., in the -z  direction) at the 
three top vertices. The deformation of the table under load 
can be seen in the Figs. 4. (a) – (b). The table was 
synthesized such that the table has a height of 0.6 m for a 
load of 600 N. Tables 7 contains the coordinates of the 
vertices taken as an initial guess. Table 8 contains the 
connectivity data of the elements and the force densities 
and free lengths of the elements obtained after solving the 
optimization problem of (6). 

 

 

 

Fig. 2 A semi-toroidaltensegrity arch (blue dashed lines indicate the bars 
and the red lines indicate the cables). 

TABLE 1. THE X, Y AND Z COORDINATES (IN M) OF THE 48 VERTICES USED TO CONSTRUCT THE TENSEGRITY ARCH. 

SN X Y Z SN X Y Z SN X Y Z 

1 0.200 0.050 0.000 17 -0.093 -0.025 0.225 33 0.147 0.046 0.164 

2 0.243 -0.025 0.000 18 -0.060 -0.025 0.145 34 0.076 -0.040 0.217 

3 0.157 -0.025 0.000 19 -0.141 0.050 0.141 35 0.050 -0.005 0.142 

4 0.185 0.050 0.077 20 -0.172 -0.025 0.172 36 0.073 0.046 0.208 

5 0.225 -0.025 0.093 21 -0.111 -0.025 0.111 37 -0.013 -0.040 0.229 

6 0.145 -0.025 0.060 22 -0.185 0.050 0.077 38 -0.008 -0.005 0.150 

7 0.141 0.050 0.141 23 -0.225 -0.025 0.093 39 -0.012 0.046 0.220 

8 0.172 -0.025 0.172 24 -0.145 -0.025 0.060 40 -0.100 -0.040 0.207 

9 0.111 -0.025 0.111 25 -0.200 0.050 0.000 41 -0.065 -0.005 0.135 

10 0.077 0.050 0.185 26 -0.243 -0.025 0.000 42 -0.096 0.046 0.199 

11 0.093 -0.025 0.225 27 -0.157 -0.025 0.000 43 -0.171 -0.040 0.153 
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12 0.060 -0.025 0.145 28 0.207 -0.040 0.100 44 -0.112 -0.005 0.100 

13 0.000 0.050 0.200 29 0.135 -0.005 0.065 45 -0.164 0.046 0.147 

14 0.000 -0.025 0.243 30 0.199 0.046 0.096 46 -0.217 -0.040 0.076 

15 0.000 -0.025 0.157 31 0.153 -0.040 0.171 47 -0.142 -0.005 0.050 

16 -0.077 0.050 0.185 32 0.100 -0.005 0.112 48 -0.208 0.046 0.073 
The designed tensegrity models are fabricated and 

tested. The semi-toroidaltensegrity arch and the biconcave 
tensegrity model of red blood cell are fabricated using 
wooden cylinders (pencil) and hemp thread (pencils act as 
bars and the hemp thread act as the cables).  The tensegrity 
table is fabricated using aluminum rods for bars and 

braided stainless steel wire for cables. It is shown in Fig.5 
(a-b).  The table is stable and is currently used in our lab. 
As the weight of the glass top is nearly 40 kg, any small 
object (up-to a weight of 20 kg) placed on top of it does 
not disturb the stability of the structure. 

 
TABLE 2. THE CONNECTIVITY OF 96 ELEMENTS THAT MAKE THE SEMI-TORROIDAL TENSEGRITY ARCH (LAST 24 ELEMENTS (I.E. 103-126) ARE BARS). 

SN Vertex 1 Vertex 2 SN Vertex 1 Vertex 2 SN Vertex1 Vertex2 SN Vertex 1 Vertex 2 

1 1 2 33 40 18 65 17 45 96 46 26 

2 1 3 34 44 21 66 18 43 97 1 5 

3 2 3 35 21 43 67 19 47 98 2 4 

4 29 6 36 43 20 68 20 48 99 3 6 

5 6 28 37 20 45 69 21 46 100 47 25 

6 28 5 38 45 19 70 22 27 101 48 26 

7 5 30 39 19 47 71 23 26 102 46 27 

8 30 4 40 47 24 72 24 25 103 1 28 

9 4 29 41 24 46 73 1 4 104 2 29 

10 32 9 42 46 23 74 2 5 105 3 30 

11 9 31 43 23 48 75 3 6 106 4 31 

12 31 8 44 48 22 76 29 9 107 5 32 

13 8 33 45 22 47 77 30 7 108 6 33 

14 33 7 46 26 25 78 28 8 109 7 34 

15 7 32 47 25 27 79 32 12 110 8 35 

16 35 12 48 27 26 80 33 10 111 9 36 

17 12 34 49 1 29 81 31 11 112 10 37 

18 34 11 50 2 30 82 35 15 113 11 38 

19 11 36 51 3 28 83 36 13 114 12 39 

20 36 10 52 4 32 84 34 14 115 13 40 

21 10 35 53 5 33 85 38 18 116 14 41 

22 15 38 54 6 31 86 39 16 117 15 42 

23 38 13 55 7 35 87 37 17 118 16 43 

24 13 39 56 8 36 88 41 21 119 17 44 

25 39 14 57 9 34 89 42 19 120 18 45 

26 14 37 58 10 38 90 40 20 121 19 46 

27 37 15 59 11 39 91 44 24 122 20 47 

28 18 41 60 12 37 92 45 22 123 21 48 

29 41 16 61 13 41 93 43 23 124 22 25 

30 16 42 62 14 42 94 47 27 125 23 27 

31 42 17 63 15 40 95 48 25 126 24 26 

32 17 40 64 16 44 
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TABLE 3. THE FORCE DENSITY AND LENGTH OF THE INDIVIDUAL ELEMENTS OF THE SEMI-TORROIDAL TENSEGRITY ARCH PROTOTYPE. 

SN 
Force 

density 
(N/m) 

Length 
(m) 

SN 
Force 

density 
(N/m) 

Length 
(m) 

SN 
Force 

density 
(N/m) 

Length 
(m) 

SN 
Force 

density 
(N/m) 

Length 
(m) 

1 0.014 0.086 33 0.035 0.073 65 0.027 0.124 96 0.005 0.090 

2 0.017 0.085 34 0.193 0.019 66 0.031 0.109 97 0.008 0.121 

3 0.011 0.086 35 0.026 0.073 67 0.027 0.105 98 0.004 0.122 

4 0.174 0.020 36 0.149 0.022 68 0.006 0.126 99 0.015 0.060 

5 0.028 0.073 37 0.034 0.073 69 0.023 0.110 100 0.012 0.067 

6 0.201 0.021 38 0.166 0.021 70 0.038 0.074 101 0.002 0.098 

7 0.046 0.072 39 0.019 0.074 71 0.009 0.098 102 0.005 0.120 

8 0.204 0.020 40 0.002 0.023 72 0.020 0.066 103 -0.036 0.135 

9 0.020 0.074 41 0.017 0.074 73 0.014 0.077 104 -0.027 0.128 

10 0.228 0.019 42 0.099 0.023 74 0.013 0.094 105 -0.036 0.126 

11 0.028 0.073 43 0.038 0.073 75 0.015 0.060 106 -0.051 0.135 

12 0.225 0.021 44 0.111 0.022 76 0.014 0.055 107 -0.048 0.128 

13 0.050 0.072 45 0.011 0.074 77 0.009 0.073 108 -0.045 0.126 

14 0.216 0.020 46 0.009 0.086 78 0.019 0.081 109 -0.056 0.135 

15 0.020 0.074 47 0.011 0.086 79 0.031 0.054 110 -0.055 0.128 

16 0.245 0.018 48 0.012 0.086 80 0.018 0.072 111 -0.059 0.127 

17 0.032 0.073 49 0.017 0.106 81 0.023 0.080 112 -0.060 0.135 

18 0.245 0.020 50 0.002 0.096 82 0.023 0.054 113 -0.059 0.128 

19 0.057 0.072 51 0.019 0.111 83 0.023 0.072 114 -0.060 0.127 

20 0.255 0.019 52 0.049 0.103 84 0.023 0.080 115 -0.056 0.135 

21 0.022 0.074 53 0.012 0.126 85 0.021 0.054 116 -0.060 0.128 

22 0.235 0.019 54 0.040 0.109 86 0.023 0.072 117 -0.053 0.127 

23 0.017 0.074 55 0.051 0.102 87 0.028 0.080 118 -0.043 0.135 

24 0.253 0.020 56 0.018 0.125 88 0.019 0.055 119 -0.054 0.128 

25 0.059 0.072 57 0.042 0.108 89 0.017 0.072 120 -0.049 0.127 

26 0.257 0.020 58 0.057 0.102 90 0.015 0.081 121 -0.032 0.135 

27 0.031 0.073 59 0.019 0.125 91 0.012 0.055 122 -0.024 0.128 

28 0.231 0.019 60 0.049 0.108 92 0.033 0.071 123 -0.035 0.126 

29 0.015 0.074 61 0.059 0.102 93 0.009 0.081 124 -0.021 0.120 

30 0.208 0.020 62 0.019 0.125 94 0.001 0.081 125 -0.029 0.126 
31 0.044 0.073 63 0.039 0.109 95 0.004 0.118 126 -0.015 0.123 

32 0.224 0.021 64 0.048 0.103 
 

 

 

 

 

 

 

 

 

(a)                                                         (b)                                                      (c) 

Fig. 3. (a) A biconcave tensegrity structure of a red blood cell (blue lines indicate the bars and the red lines indicate the cables). (b) A red blood cell 
prototype (scaled up) made with pencil and hemp threads. (c) Solid model of a red blood cell. 
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TABLE 4. THE X, Y AND Z COORDINATES (IN M) OF THE 48 VERTICES USED TO CONSTRUCT THE TENSEGRITY ARCH. 

SN X Y Z SN X Y Z SN X Y Z 
1 0.057 -0.362 0 17 0.133 0.184 0.184 33 -0.053 0 0.008 
2 0.133 -0.261 0 18 0.057 0.256 0.256 34 -0.053 0 -0.008 
3 0.053 -0.008 0 19 -0.057 0.256 0.256 35 -0.133 0 -0.261 
4 0.053 0.008 0 20 -0.133 0.184 0.184 36 -0.057 0 -0.362 
5 0.133 0.261 0 21 -0.053 0.006 0.006 37 0.057 0.256 -0.256 
6 0.057 0.362 0 22 -0.053 -0.006 -0.006 38 0.133 0.184 -0.184 
7 -0.057 0.362 0 23 -0.133 -0.184 -0.184 39 0.053 0.006 -0.006 
8 -0.133 0.261 0 24 -0.057 -0.256 -0.256 40 0.053 -0.006 0.006 
9 -0.053 0.008 0 25 0.057 0.000 0 41 0.133 -0.184 0.184 
10 -0.053 -0.008 0 26 0.133 0.000 0 42 0.057 -0.256 0.256 
11 -0.133 -0.261 0 27 0.053 0.000 0 43 -0.057 -0.256 0.256 
12 -0.057 -0.362 0 28 0.053 0.000 0 44 -0.133 -0.184 0.184 
13 0.057 -0.256 -0.256 29 0.133 0.000 0 45 -0.053 -0.006 0.006 
14 0.133 -0.184 -0.184 30 0.057 0.000 0 46 -0.053 0.006 -0.006 
15 0.053 -0.006 -0.006 31 -0.057 0.000 0 47 -0.133 0.184 -0.184 
16 0.053 0.006 0.006 32 -0.133 0.000 0 48 -0.057 0.256 -0.256 

 

TABLE V. THE CONNECTIVITY OF 136 ELEMENTS TO MAKE THE RBC BICONCAVE MODEL (LAST 24 ELEMENTS (I.E. 113-136) ARE BARS).

SN vertex1 vertex2 SN vertex1 vertex2 SN vertex1 vertex2 SN vertex1 vertex2 

1 1 2 35 35 36 69 5 38 103 34 22 

2 2 3 36 36 25 70 38 26 104 22 10 

3 3 4 37 37 38 71 26 14 105 3 10 

4 4 5 38 38 39 72 14 2 106 40 45 

5 5 6 39 39 40 73 11 44 107 28 33 

6 6 7 40 40 41 74 44 32 108 16 21 

7 7 8 41 41 42 75 32 20 109 4 9 

8 8 9 42 42 43 76 20 8 110 39 46 

9 9 10 43 43 44 77 8 47 111 27 34 

10 10 11 44 44 45 78 47 35 112 15 22 

11 11 12 45 45 46 79 35 23 113 1 43 

12 12 1 46 46 47 80 23 11 114 42 31 

13 13 14 47 47 48 81 11 2 115 30 19 

14 14 15 48 48 37 82 41 44 116 18 7 

15 15 16 49 1 42 83 32 29 117 6 48 

16 16 17 50 42 30 84 17 20 118 37 36 

17 17 18 51 30 18 85 5 8 119 25 24 

18 18 19 52 18 6 86 47 38 120 13 12 

19 19 20 53 6 37 87 35 26 121 2 44 

20 20 21 54 37 25 88 14 23 122 41 32 

21 21 22 55 25 13 89 3 40 123 29 20 

22 22 23 56 13 1 90 40 28 124 8 17 

23 23 24 57 12 43 91 28 16 125 5 47 

24 24 13 58 43 31 92 16 4 126 35 38 

25 25 26 59 31 19 93 4 39 127 26 23 
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26 26 27 60 19 7 94 39 27 128 11 14 

27 27 28 61 7 48 95 27 15 129 45 3 

28 28 29 62 48 36 96 15 3 130 40 33 

29 29 30 63 36 24 97 10 45 131 28 21 

30 30 31 64 24 12 98 45 33 132 16 9 

31 31 32 65 2 41 99 33 21 133 4 46 

32 32 33 66 41 29 100 21 9 134 39 34 

33 33 34 67 29 17 101 9 46 135 27 22 

34 34 35 68 17 5 102 46 34 136 15 10 
 

TABLE VII.  THE FORCE DENSITY AND FREE-LENGTH OF THE INDIVIDUAL ELEMENTS OF THE RED BLOOD CELL BICONCAVE PROTOTYPE

SN 

Force 
density 
(N/m) Length (m) SN 

Force 
density 
(N/m) Length (m) SN 

Force 
density 
(N/m) Length (m) SN 

Force 
density 
(N/m) Length (m)

1 0.008 0.125 35 0.008 0.125 69 0.004 0.198 103 0.223 0.005 

2 0.004 0.263 36 0.009 0.113 70 0.004 0.198 104 0.223 0.005 

3 0.033 0.016 37 0.008 0.125 71 0.004 0.198 105 0.113 0.090 

4 0.004 0.263 38 0.004 0.263 72 0.004 0.198 106 0.113 0.090 

5 0.008 0.125 39 0.033 0.016 73 0.004 0.198 107 0.113 0.090 

6 0.009 0.113 40 0.004 0.263 74 0.004 0.198 108 0.113 0.090 

7 0.008 0.125 41 0.008 0.125 75 0.004 0.198 109 0.113 0.090 

8 0.004 0.263 42 0.009 0.113 76 0.004 0.198 110 0.113 0.090 

9 0.033 0.016 43 0.008 0.125 77 0.004 0.198 111 0.113 0.090 

10 0.004 0.263 44 0.004 0.263 78 0.004 0.198 112 0.113 0.090 

11 0.008 0.125 45 0.033 0.016 79 0.004 0.198 113 -0.003 0.300 

12 0.009 0.113 46 0.004 0.263 80 0.004 0.198 114 -0.003 0.300 

13 0.008 0.125 47 0.008 0.125 81 0.002 0.265 115 -0.003 0.300 

14 0.004 0.263 48 0.009 0.113 82 0.002 0.265 116 -0.003 0.300 

15 0.033 0.016 49 0.002 0.276 83 0.002 0.265 117 -0.003 0.300 

16 0.004 0.263 50 0.002 0.276 84 0.002 0.265 118 -0.003 0.300 

17 0.008 0.125 51 0.002 0.276 85 0.002 0.265 119 -0.003 0.300 

18 0.009 0.113 52 0.002 0.276 86 0.002 0.265 120 -0.003 0.300 

19 0.008 0.125 53 0.002 0.276 87 0.002 0.265 121 -0.005 0.332 

20 0.004 0.263 54 0.002 0.276 88 0.002 0.265 122 -0.005 0.332 

21 0.033 0.016 55 0.002 0.276 89 0.222 0.005 123 -0.005 0.332 

22 0.004 0.263 56 0.002 0.276 90 0.222 0.005 124 -0.005 0.332 

23 0.008 0.125 57 0.002 0.276 91 0.223 0.005 125 -0.005 0.332 

24 0.009 0.113 58 0.002 0.276 92 0.223 0.005 126 -0.005 0.332 

25 0.008 0.125 59 0.002 0.276 93 0.222 0.005 127 -0.005 0.332 

26 0.004 0.263 60 0.002 0.276 94 0.223 0.005 128 -0.005 0.332 

27 0.033 0.016 61 0.002 0.276 95 0.222 0.005 129 -0.109 0.108 

28 0.004 0.263 62 0.002 0.276 96 0.222 0.005 130 -0.109 0.108 

29 0.008 0.125 63 0.002 0.276 97 0.222 0.005 131 -0.109 0.108 

30 0.009 0.113 64 0.002 0.276 98 0.222 0.005 132 -0.109 0.108 

31 0.008 0.125 65 0.004 0.198 99 0.222 0.005 133 -0.109 0.108 

32 0.004 0.263 66 0.004 0.198 100 0.223 0.005 134 -0.109 0.108 

479



 
Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013 

 
 

33 0.033 0.016 67 0.004 0.198 101 0.223 0.005 135 -0.109 0.108 

34 0.004 0.263 68 0.004 0.198 102 0.223 0.005 136 -0.109 0.108 
 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Two views of the tensegrity table under the application of load. 
Free standing tensegrity table (blue lines indicate the bars and the red 
solid lines indicate the cables). The table under an applied external load 
(green dashed lines indicate the bars and the magenta dashed lines 
indicate the cables). 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

 
Fig. 5. Two views of the tensegrity table. The entire weight of the glass-
top of the stable is supported by the tensegrity structure. 

 

TABLE VII . THE X, Y AND Z COORDINATES OF THE 6 VERTICES USED TO 

CONSTRUCT THE TENSEGRITY TABLE. (Z COORDINATE OF THE VERTICES 

4,5 AND 6 ARE ITERATED) 

SN X(m) Y(m) Z(m) 
1 0 0 0 
2 0.866 0 0 
3 0.433 0.750 0 
4 0.636 0.707 0.7 
5 -0.064 0.198 0.7 
6 0.727 -0.155 0.7 

TABLE VIII.  THE CONNECTIVITY OF 12 ELEMENTS (LAST 3(I.E. 10-12) 
ARE BARS), FORCE DENSITIES AND INITIAL LENGTHS OF INDIVIDUAL 

ELEMENTS TO MAKE THE TENSEGRITY TABLE. 

SN vertex1 vertex2 

Force 
Density 
(N/m) 

Length 
(m) 

1 1 2 0.200 0.863 
2 2 3 0.200 0.863 
3 3 1 0.200 0.863 
4 4 5 0.200 0.863 
5 5 6 0.200 0.863 
6 6 4 0.200 0.863 
7 1 5 0.363 0.664 
8 2 6 0.363 0.664 
9 3 4 0.363 0.663 
10 1 4 -0.348 1.144 
11 2 5 -0.348 1.144 
12 3 6 -0.348 1.144 

IV.  CONCLUSIONS 

In this paper, we developed an optimization method to 
synthesize tensegrity structures of desired shapes. The 
coordinates of the vertices and the connectivity of the 
elements are the inputs to the problem, which we use to 
solve for the force densities in each of the member 
elements using the equilibrium equations at the vertices. 
Constraints are imposed on the force densities to 
accommodate tensions in bars and compressions in cables. 
The following conclusions can be drawn from the work 
presented here. 

• The solution is unique for a given set of positions of 
the vertices and their connectivity with bars and 
cables. The free lengths of the elements change 
according to different materials assigned but the force 
densities do not change. 

• Solving the constrained optimization problem posed for 
the purpose of synthesis of the tensegrity structure of 
desired shape is equivalent to constructing the null-
space of the combined connectivity-coordinate matrix. 
When the rank of the null-space is more than unity, 
tensegrity structures can be constructed using linear 
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combinations of the basis vectors of the null-space. 
This will be explored further in future work 
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