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Abstract—This paper presents a study of a classical mech-
anism synthesis problem in the framework of multi-objective
optimisation. In addition to the primary kinematic objective of
reducing the structural error, staying away from the singular
configurations is considered as a secondary objective. Two well-
studied coupler-curve synthesis problems reported in existing
literature are revisited for the purpose of application of the
proposed formulations, and the results are obtained using the
genetic algorithm-based optimiser, NSGA-II. Detailed analysis
of the results show that the Pareto-optimal fronts obtained
dominate the existing ones in terms of the secondary objective,
while being comparable in the primary one.

Keywords – Coupler-curve Synthesis; Multi-objective Optimi-
sation, NSGA-II, Genetic Algorithms

I. I NTRODUCTION

Synthesis of a four-bar mechanism for a given coupler
curve is one of the classical problems in the domain of
mechanism synthesis and design. It is known that the prob-
lem can be solvedexactly for at the most nine arbitrary
points specified in a plane, and reports exist in literature
documenting how all the possible solutions can be found
for this problem [1]. It may be noted that while such
solution procedures are available, they are typically difficult
to implement, as one inherent step in such formulations is
the solution of a set of polynomial equations – a task that
remains computationally challenging even in the modern
times. Furthermore, often in a design problem, one tries to
specify a number of points on the desired coupler curve
from the perspective of defining theoverall shape of the
curve. In such a scenario, it is generally more useful to
find a curve which passesapproximatelythough a large (i.e.,
larger than nine) number of points, than passing exactly via

nine specified points. These observations have led to the
popularity of a number of optimisation-based approximate
synthesis methods in the recent years.

Several probability-based optimisation methods have
been applied to classical problems in mechanism synthesis,
such as thecoupler-curvesynthesis of a planar four-bar
mechanism [2], [3], [4], [5]. Optimisation techniques based
on Genetic Algorithms (GA), Differential Evolution (DE),
Particle Swarm Optimisation (PSO) etc. have several advan-
tages over the classical gradient-based techniques in solving
such problems. Firstly, depending upon the kinematic formu-
lations, computing the gradients of the objective functions
is typically a difficult task, if not practically impossible.
Further, in most cases,full-cycle mobilityof the crank (i.e.,
the ability of the actuated link to run through a complete
cycle without getting locked) is a practical necessity, and the
most common form of kinematic constraint governing this
behaviour, namely the Grashof’s condition, is procedural in
nature, and hence cannot be cast in terms ofdifferentiable
functions. The same can be said about other commonly im-
posed constraints, e.g., packaging considerations [6]. Thus,
the very nature of the standard (or, popular) formulations
tend to favour methods of soft-computing, which can handle
non-smooth objectives and constraints. Another major ad-
vantage of these schemes is that they are designed to explore
the search space better and to locate theglobal minima.

As it turns out, practicallyall engineering problems
(the one under consideration included) are essentially multi-
objective in nature. For instance, while the primary objective
in the problem at hand is to find a four-bar mechanism
whose coupler curve approximates a given curveas closely
as possible(in kinematics parlance,minimising the struc-
tural error), several secondary objectives are motivated by
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practical considerations, such as applicability and manufac-
turability. For instance, the mechanism should be as compact
as possible; at all configurations it should be away from
singularity; no links should be too long or too short, and so
on.

In all such problems one is interested in obtaining the
Pareto-optimal frontfor the two-objective or multi-objective
problem representing the trade-offs between the two or more
objectives over the relevant design domain. Thus, an opti-
miser with the capability of solving multi-objective problems
would be ideally suited to study such problems. A GA-
based optimiser, namely, Non-dominated Sorting Genetic
Algorithm NSGA-II1 [7] has been applied successfully to
several multi-objective optimisation problems.

It is interesting that in spite of several applications
of soft-computing tools to mechanism synthesis problems,
much of the potentials of some of these methods in solv-
ing multi-objective problems in this domain remain to be
exploited. In a recent study the problem of kinematic de-
sign of suspension mechanisms under conflicting objectives
has been attempted and Pareto-optimal front obtained us-
ing NSGA-II [8]. Manufacturing and assembly tolerance
and structural error have been used as conflicting objec-
tives to obtain Pareto-optimal fronts in the coupler curve
synthesis problem [9]. Another study reports arriving at the
Pareto-optimal front for coupler synthesis considering the
structural error andtransmission angle erroras conflicting
objectives using a variant ofNSGA-II along with a local
optimiser to improve the Pareto-optimal front [10]. A related
work [11], shows that by employing special constraint-
handling methods and using optimal control parameters of
NSGA-II, the results obtained for coupler-curve synthesis
problem are comparable to the ones reported in paper [5]
and superior to the ones reported in paper [2] for single
objective formulation. The present work utilises the above
developments to study the coupler-curve synthesis problem
as a multi-objective optimisation problem. Anichingstrategy
is adopted, so as to capture the Pareto-optimal front to
the synthesis problem, focussing on the primary objective
to reduce the structural errors and the secondary objective
which strives to keep the mechanism as far away from
singularity (i.e., locking) as possible. The results obtained
are fairly encouraging, as the solutions compare favourably
to those reported in existing literature in terms of the primary
objective, while scoring better considering the secondary
objective. Two case studies reported in [10] are used to
demonstrate the proposed formulations, and detailed com-
parisons of the results obtained are presented. The rest of
the paper in organised as follows: Section 2 presents the
formulation of the kinematics objectives and constraints.
Section 3 describes the multi-objective formulation. The
results obtained are discussed in detail in Section 4, and
finally the conclusions presented in Section 5.

1Developed at the Kanpur Genetic Algorithms Laboratory, Indian Insti-
tute of Technology Kanpur, India. Available online for free download at:
http://www.iitk.ac.in/kangal/codes.shtml.

II. FORMULATION OF THE COUPLER-CURVE SYNTHESIS
PROBLEM

The formulation for the coupler-curve synthesis problem
is fairly standard (see, e.g., [5]) as the problem has been
studied extensively. Fig. 1 shows the schematic of the mech-
anism under consideration. Thecoupler pointpc is required
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Fig. 1. A planar four-bar mechanism with rotary actuators

to describe a desired curve as the crank, i.e., link 1, runs
through a specified interval. From Fig. 1, the coordinates
of pc in theXY frame are found as:

x = O1x + l1 cos θ1 + xc cosφ2 − yc sinφ2, (1)
y = O1y + l1 sin θ1 + xc sinφ2 + yc cosφ2. (2)

Typically, a number oftarget pointsare chosen to represent
the desired coupler curve, and the original problem is
considered to be solved adequately when the coupler curve
generated by the synthesised mechanism passes through
these points (denoted by(xdi, ydi), i = 1, . . . , n) at certain
specified values of the crank angle,θ1i, i = 1, . . . , n.

The primary objective is to reduce thestructural error
computed as the sum of the squares of the Euclidean
distances of the actual coupler points generated by the
mechanism (denoted by(xgi, ygi)) from the respective target
points at then specified crank locations:

E =

n
∑

i=1

d2i =

n
∑

i=1

(xgi − xdi)
2 + (ygi − ydi)

2. (3)

Though many constraints may be applied on the synthesis
problem, the only one considered here isfull-cycle mobil-
ity, i.e., link 1 should be a proper crank, that can rotate
through360◦ without the mechanism getting locked ever2.
This is possible when the link lengths satisfy the Grashof’s
conditions (see, e.g., [12]). However, as shown in [11], the
same condition can be expressed in terms of the following

2This is primarily because in the subsequent sections, the results of the
proposed method are compared with several others reported in the existing
literature, and hence the problem formulation tries to replicate the existing
ones to the extent possible so as to make the comparison meaningful.

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec. 18-20, 2013

490



set of inequality constraints:

g1
∆
=

∣

∣

∣

∣

l20 + l21 − (l2 + l3)
2

2l0l1

∣

∣

∣

∣

− 1 > 0, (4)

g2
∆
=

∣

∣

∣

∣

l20 + l21 − (l2 − l3)
2

2l0l1

∣

∣

∣

∣

− 1 > 0, (5)

g3
∆
= l1 + l2 + l3 − l0 > 0, (6)

g4
∆
= l0 + l2 + l3 − l1 > 0, (7)

g5
∆
= l0 + l1 + l3 − l2 > 0, (8)

g6
∆
= l0 + l1 + l2 − l3 > 0. (9)

In the above equations,l0 refers to the length of the fixed
base, i.e., the distance between the pointsO1 and O2 in
Fig. 1. Using this form of the full-cycle mobility instead
of the standard form of the Grashof’s condition has many
advantages. Specifically, the values ofg1 andg2 can be used
as measures of “distance” from the singularities. This is
made use of specifically in the later part of the paper when
the functionsg1and g2 are used to construct a secondary
objective, in addition to their use in the constraints.

A. Constraint-handling Scheme

The constrained optimisation problem as formulated
above is converted into a unconstrained problem using a
penalisation strategy. Each constraint is imposed through a
corresponding penalty term, which is added to the objective
function; the sum is then used to arrive at the totalfitness
value as required byNSGA-II, (i.e., the optimiser used
in this work) to rank the individuals. It has been shown
in [11] that the use of anon-linear scalingof the penalty
terms help prevent the distortion of the original objective
function, which may have introduced spurious local optima
otherwise [13], [14]. The details of the scheme have been
included in the Appendix for the sake of completeness.

B. Optimisation using NSGA-II

The optimisation problems formulated in this work
are solved with NSGA-II. The convergence, as well
as the rate of convergence of this method are affected
by its internal control parameters, namely: probability of
crossoverpc, probability of mutationpm, distribution index
for crossoverηc and the distribution index for mutationηm.
In addition, the other process parameters are: the population
sizeNpop, the number of generationsNgen, and the seed
value for random number generation. In a related work [11],
the authors have presented a systematic study on the sen-
sitivity of the optimal results obtained by NSGA-II to its
internal parameters, for the specific case of the coupler curve
synthesis problem (treated as a single-objective problem).
The parameter values found to provide good convergence
therein is used throughout in the present work.

TABLE I. B OUNDS FOR GEOMETRIC DESIGN VARIABLES

Variable l1 l2 l3 xc yc O1x O1y O2x O2y

Lower 0 0 0 -60 -60 -60 -60 -60 -60
bound
Upper 60 60 60 60 60 60 60 60 60
bound

III. M ULTI -OBJECTIVE FORMULATION

The coupler curve synthesis problem is posed as a
multi-objective problem with the primary objective as the
minimisation of the structural error,E, as defined in Eq. (3),
and secondary objective as maximising the “distance” from
singularity (denoted bySD). The multi-objective problem
is posed formally as:

Minimise E,

Maximise SD
∆
= min(g1, g2),

Subject to gi > 0, i = 1, . . . , 6.

In a related work [10], the secondary objective is taken as the
improvement of transmissibility, and it is quantified in terms
of the departure (denoted byTAE, which is an acronym
for “transmission angle error”) of the minimum and the
maximum transmission angle from the optimal value of90◦:

TAE = (γmax− 90◦)2 + (γmin − 90◦)2, (10)

where, cos γmax =
l22 + l32 − (l0 + l1)

2

2l2l3
, (11)

cos γmin =
l22 + l32 − (l0 − l1)

2

2l2l3
. (12)

Although in this work the secondary objective is formulated
so as to keep the mechanism away from the singularities, it is
expected that the same would result in good transmissibility
as well. In order to assess this in a quantitative manner, the
measureTAE is also used to evaluate the quality of the
mechanisms obtained in this paper.

IV. RESULTS AND DISCUSSIONS

In this section, the formulations described above are
illustrated via applications to two different problems from
existing literature.

A. Problem 1

In this case the coupler point needs to pass through six
prescribed locations on a straight line (adopted from Case 1
of [10]): (20, 20), (20, 25), (20, 30), (20, 35), (20, 40),
(20, 45), respectively. The corresponding crank angles (de-
noted byθ(i)1 ) are not specified, and thus they get included
in the variable vector. The other design variables, i.e., the
geometric parameters defining the mechanism, and their
respective bounds are listed in Table I. ThePareto-optimal
front obtained is shown in Fig. 2(a). Two solutions on the

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec. 18-20, 2013

491



TABLE II. PARETO-OPTIMAL POINTS FORPROBLEM 1 (SEEFIG. 2(A))

l1 l2 l3 xc yc O1x O1y O2x O2y θ1
1 θ2

1 θ3
1 θ4

1 θ5
1 θ6

1

Point D 4.20 20.60 39.08 -17.96 -47.60 -25.78 15.83 -11.05 59.04 3.65 3.14 2.72 2.33 1.91 1.25
Point A [10] 7.13 26.78 22.82 39.24 28.07 -18.90 58.47 -32.01 32.38 5.09 6.63 7.15 7.64 8.17 9.22
Point F 2.29 35.95 50.00 -47.85 -60.0 -48.16 -2.31 -60.00 58.12 4.33 4.29 3.28 0.15 1.17 1.29
Point B [10] 2.13 37.76 37.76 9.93 24.41 -0.49 48.37 -47.48 23.44 5.09 5.12 5.16 8.20 8.25 8.28
Point C [10] 6.81 25.81 28.22 37.03 31.12 -20.07 57.45 -39.84 30.63 5.72 6.64 7.14 7.60 8.16 8.94
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(a) Pareto-optimal front
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Fig. 2. Pareto-optimal front and synthesised mechanism for Problem 1

Pareto-optimal front, namely, pointD, which corresponds
to the smallest structural error, and an intermediate pointF ,
are tabulated in Table II. Three solution points obtained in
the Pareto-optimal front for the same problem in [10] are
marked as pointsA, B andC in Fig. 2(a), and also tabulated
in Table II. The objective values corresponding to all these
points are tabulated in Table III. As can be seen from these,
the Pareto-optimal front obtained in the present method
is dominantover theprojected (i.e., linearly interpolated)

Pareto-optimal front reported in [10]. The pointF marked on
the Pareto-optimal front dominates pointB reported in [10],
since it affords thesamedistance from singularity (SD),
but with significantly less structural error than pointB.
The TAE index, used as the secondary objective in [10],
is also compared at the corresponding points in Table III.

TABLE III. C OMPARISON OF RESULTS FORPROBLEM 1 (SEE

FIG. 2(A))

E SD TAE

Point D 1.83 2.8 444.02
Point A [10] 2.9e-7 1.13 1451.46
Point F 84.61 11.73 40.50
Point B [10] 241.41 11.52 41.68
Point C [10] 0.54 1.53 1023.29

The Pareto front obtained in this work is dominant
in terms of the secondary objective (i.e., distance from
singularity), and comparable in terms of structural error, the
primary objective. The mechanism corresponding to solution
point D in the front is shown in Fig. 2(b) along with the
target points and the path traced.

B. Problem 2

This problem statement is identical with the Case 2
reported in [10]. Apart from the variables described in
Table I, there is an additional variable in this case: the
initial position of the crank,θ(1)1 ∈ [0, 2π]. The 18 points
are to be reached at20◦ increments of the crank angle,
i.e., θ(i)1 = θ

(i−1)
1 + π/9, i = 2, . . . , 18. The target points

are given in Table IV. The Pareto-optimal front obtained
for this problem is shown in Fig. 3. The objective values
corresponding to two extreme solutions on the front, i.e.,
points A and B along with solutions points obtained in
the Pareto-optimal front for the same case study in [10],
namely D and E, are tabulated in Table V. As can be seen
from Fig. 3 and Table V, the Pareto-optimal front obtained
in the present work isdominant over the projected front
reported in [10]. A comparison of both theSD andTAE
indices show improvement over [10], whereas the structural
error indices are comparable.

V. CONCLUSIONS

A multi-objective optimisation approach to the prob-
lem of coupler-curve synthesis of a four-bar mechanism
is presented in this paper. The primary objective is to
minimise the structural error, and the secondary objective
to improve the kinematic performance of the mechanism,
by keeping it away from singularities to the maximum
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TABLE IV. C OUPLER POINTS TO BE TRACED FOR PRESCRIBED ANGLES INPROBLEM 2

θ
(i)
1 θ

(1)
1 θ

(2)
1 θ

(3)
1 θ

(4)
1 θ

(5)
1 θ

(6)
1 θ

(7)
1 θ

(8)
1 θ

(9)
1 θ

(10)
1 θ

(11)
1 θ

(12)
1 θ

(13)
1 θ

(14)
1 θ

(15)
1 θ

(16)
1 θ

(17)
1 θ

(18)
1

xdi 0.5 0.4 0.3 0.2 0.1 0.05 0.02 0.0 0.0 0.03 0.10 0.15 0.2 0.3 0.4 0.5 0.6 0.6
ydi 1.1 1.1 1.1 1.0 0.9 0.75 0.60 0.5 0.4 0.30 0.25 0.20 0.3 0.4 0.5 0.7 0.9 1.0

TABLE V. PARETO-OPTIMAL POINTS AND COMPARISON OF RESULTS FORPROBLEM 2 (SEEFIG. 3)

l1 l2 l3 xc yc O1x O1y O2x O2y θ
(1)
1 E SD TAE

Point A 0.34 5.00 10.00 1.73 -4.16 4.64 1.67 -6.20 -2.82 0.36 0.069 9.95 151.43
Point D [10] 0.33 6.43 0.48 1.83 4.36 2.59 -3.43 6.72 1.33 1.29 9.8e-03 0.09 5454.51
Point B 0.30 10.00 10.00 2.22 -4.05 4.68 1.90 -7.32 -5.55 0.35 0.388 22.57 11.82
Point E [10] 0.30 5.24 5.29 0.74 -1.38 -0.61 -0.66 1.75 6.34 7.06 0.380 11.52 42.15
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Fig. 3. Pareto-optimal points and comparison of results for Problem 2

extent possible. A GA-based multi-objective optimisation
tool, namely,NSGA-II has been used in this work. Through
the comparison with several existing solutions in reported
literature, it is demonstrated that the results obtained in
this work are better in terms of the secondary objective,
while being comparable in terms of the primary objective
of reducing the structural error. These problems are under
further study to improve upon the results obtained.
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APPENDIX
DETAILS OF THE CONSTRAINT HANDLING SCHEME

Consider a typical constrained optimisation problem:

Minimise f(x),

subject to gi(x) ≥ 0, i = 1, 2, ..., n;

hj(x) = 0, j = 1, 2, ...,m;

with xk ∈ [ak, bk], k = 1, 2, ..., p,

where f(x) is the objective function;x = (x1, x2,
x3, · · · , xp)

T is the vector of design variables;gi(x)
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andhj(x) are the inequality and equality constraints respec-
tively; andak andbk are the upper and lower bounds onxk,
respectively. The proposed approach uses a penalisation
strategy in order to convert the constrained optimisation
problem to an unconstrained one. Each constraint is imposed
through a corresponding penalty term which is added to the
objective function; the sum is then used to arrive at the
total fitness valuerequired by the optimiser. Each penalty
term modifies the objective function in the region where it
is violated. If the contribution from this term istoo small
in comparison to the original objective, then it may fail to
enforce the constraint strictly. On the other hand, if the
penalty term is too high in value, the distortion of the
original objective function may be so high as to introduce
spurious local optima [13]. The inherent drawback in this
approach is the difficulty in finding appropriate penalty
functions and the corresponding numerical weights, which
offer the best compromise for a given problem [14]. In
partial solution to the above problem, a transformation of
the penalty function is used which confines its values to the
interval [0,1], irrespective of the form of the function. A
single weight,α, is then used on the sum of the penalty
terms. The heuristics in the process is therefore reduced to
the choice of a single parameterα, so as to match the order
of the nominal penalty terms to that of the unconstrained
objective. The details of the scheme are described in the
following.

The said transformation of the constraint functions has
the following form:

ψλ(t) =
t

λ+ t
, λ > 0. (13)

It has been used previously in a very different appli-
cation, namely, navigation of mobile robots [15]. Obvi-
ously, ψλ(t) ∈ [0, 1] ∀t ∈ [0,∞], i.e., for any non-
negative real value oft, the functionψλ(t) is confined to

the interval[0, 1]. Incorporating these details, the steps for
the evaluation of the unconstrained objective for any given
individual having the design variablesx are as follows:

1) Compute the objective function value,f(x).

2) Compute the penalty term quantifying the extent of
violation of the equality constraints by the sum of
the squares of thescaledresiduals:

heq(x) =

m
∑

j=1

ψλ(h
2
j (x)). (14)

3) Compute the penalty term for the inequality con-
straints in a similar manner,iff they are violated:

geq(x) =

n
∑

i=1

P (gi(x)), (15)

where the functionP (x) is defined as:

P (t) =

{

0 if t ≥ 0,

ψλ(t
2) if t < 0.

The functionP (t) acts as a switch, adding the
penalty term corresponding to a constraintiff it is
violated.

4) Compute the unconstrained objectiveF (x) as a
sum of the penalty terms and the original objective:

F (x) = f(x) + α(geq(x) + heq(x)). (16)

In (16), the positive scalarα is used to weigh
the penalty terms appropriately against the original
objective.

It is expected that the via proper tuning of the parameters,λ
andα, the effect of constraints can be imparted on the overall
objective in abettermanner.
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