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Abstract—Over-constrained and deployable mechanisms are
extensively used in space and in other applications. There is an
existing approach which studies the mobility and static analysis
of the over-constrained and deployable mechanisms. The main
feature of this approach is that the natural co-ordinates are
used to define all the constraints present in the mechanisms. The
constraint Jacobian matrix is developed by taking the derivatives
of all the constraint equations. The null space dimension of the
constraint Jacobian matrix gives the degree of freedom of the
over-constrained mechanism. A numerical algorithm is used to
identify the number of redundant links and joints through the
constraint equations. Closed-loop kinematic solutions are found
out to ensure that the over-constrained mechanism can be made
deployable by actuating only one joint and all other points can
be expressed in terms of this actuated variable. In this paper, the
existing approach has been extended by implementing the same
in an over-constrained box mechanism, where the trajectory of
the joints obtained by using the constraint equations has been
compared with the trajectory obtained from ADAMS. We have
also extended the same approach to static analysis for an over-
constrained hexagonal mechanism. The result obtained has been
cross checked with that of obtained in ANSYS. Above all the new
contributions of this paper is that we have used the approach
for studying kinematics and statics of a mechanism having both
prismatic and revolute joints which has not been done before.
Secondly, the validation of the proposed theory has been done
by using the above mentioned commercial packages.

Index Terms—Over-constrained mechanism, Degree of free-
dom, Jacobian matrix.

I. INTRODUCTION

DEGREE of freedom of a multibody system can be defined
as the number of independent co-ordinates [1] required

to define the mechanism. Different kind of joints used in the
mechanism impose some constraints on the mechanism and
decreases the mobility of the system. But many traditional
method like Grübler-Kutzbach criteria [2] are based on only
number of links and number of joints which determine the de-
gree of freedom without considering the redundant constraints
present in the mechanism. So, in all the over-constrained
mechanism we get less number of degree of freedom than actu-
ally the system has. Again we use separate methods for study-
ing kinematics, statics, dynamics and determining mobility of
a system. There is no common method which can be used for
studying all the three together. In this paper a new method
based on the constraint equations of the mechanism has been

used for determining mobility, studying kinematics and statics
of the mechanism collectively. The associated redundant links
and joints are identified through the corresponding constraint
equations. Some standard package ADAMS and ANSYS has
been used for cross checking the correctness of the method.
In the following section the constraint Jacobian has been
developed out of the constraint equations for studying the
above collectively.

II. RELATED WORK

As mentioned earlier, there are many spatial mechanisms
which are over-constrained but give negative degree of free-
dom by the traditional Grübler-Kutzback criteria even though,
the mechanisms move smoothly and have typically one degree-
of-freedom. In order to find out the degree of freedom, Nagaraj
[1], [3] have developed a new method that studies the kinemat-
ics of such over-constrained mechanism. They have used the
available constraint equations as the basis to predict the degree
of freedom, obtain closed-form solutions, and obtain the static
deflections of several deployable mechanisms and structures
respectively. In their work, a numerical algorithm has been
proposed to remove the redundant links and joints present in
the over-constrained mechanisms. Kwan and Pellegrino [4]
have described the stiffness of the cable used in deployable
mechanism by an analytical method from which the load
carrying capacity can be predicted. Although, the opening and
closing are important for deployable mechanisms, the kinemat-
ics of the mechanism is also very important to discuss. Gan
and Pellegrino [5] have done a systematic study of a closed-
loop mechanism which can be folded into a bundle of bars. In
their work, the kinematics of the deployable mechanism has
been studied in detail. They have also examined the analytical
and numerical solution of the loop-closure equations for such
deployable mechanism. When the deployable mechanism is
properly locked, it behaves as a structure that is capable of
carrying load. For such structure, it is important to do the static
analysis for design and practical use. Kaveh and Davaran [6]
have performed the static analysis of the pantograph foldable
structures. The fundamental unit of the pantograph mast is the
scissor like elements. The stiffness matrix has been developed
for each duplet. They have considered each link as a beam
and which has three nodes. The axial deflection is taken into
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account but not the torsion. Aviles et al. [7] have done
the kinematic analysis of the linkages through finite elements
and also found out the geometric stiffness matrix. They have
derived the kinematic properties of the links in a mechanism
using the length constraints and the basic nodes in the links.

For a deployable mechanism it is also important to study
the dynamics along with the kinematics and static analysis.
A dynamic analysis of the constrained mechanical system
is done by Unda and Garcia [8]. In this work, the author
provides a theoretical and numerical study in both ’reference
point’ and ’natural’ co-ordinates for dynamic analysis of the
constrained mechanical system. This study presents different
ways of formulating the differential equations of motions.
The dynamic analysis of a planar mechanism with lower pair
in basic co-ordinates is also performed in detail by Serna
et al. [9]. In this work, the numerical solution for the
dynamic problem of a planar mechanism has been presented.
Link constraints and basic co-ordinates are taken to study the
dynamic problems. Waldron [10] has nicely explained the
constraint analysis of the mechanism through the constraint
equations. Specifically he has focused on the kinematic study
of the mechanisms through the constraint equations. Generally
cables are used for opening and closing in a deployable
mechanisms. Kwan and Pellegrino have studied to identify the
active and passive cables [11] and how these can be expressed
in terms of constraint equations, a detail analysis has been
given in [12]. The literature survey done above is for the
kinematic, static, and dynamic analysis [13], [14], [15] of the
deployable mechanisms. The method developed by Nagaraj [1]
covers the kinematic and static analysis for an over-constrained
mechanism. However, the approach is limited to mechanism
with revolute and spherical joints. This work is an extension
of the work done by Nagaraj [1]. The main contributions of
this paper are the inclusion of prismatic joints and analysis of
deployable mechanisms containing combinations of prismatic,
rotary joints. The other contributions of the work, such as
derivation of closed-form equations, kinematic analysis using
ADAMS and static analysis using ANSYS has been performed
and compared with results of the approached method.

Revolute jointRevolute joint

Revolute jointRevolute joint
1 2

34

5

6

Fig. 1. A rectangular bay

A. Kinematic Analysis of Deployable Structure

The kinematic analysis of the deployable mechanism can
be described using different co-ordinates like (i) relative co-

ordinate (ii) reference point co-ordinates and (iii) natural co-
ordinates [2]. In this paper we have described all the constraint
equation in natural co-ordinates . The constraint equations
are differentiated to obtain constraint Jacobian matrix([J]). In
rest of the paper, we have used the Jacobian matrix ([J])
for determining the mobility and the deflection of the over-
constrained mechanism and the structure respectively. An
algorithm is developed to identify the redundant links and
joints through their corresponding constraint equations for an
over-constrained mechanism. The algorithm can be mentioned
as follows.
1. Find all the joint constraints and length constraints, and then
evaluate their derivatives.
2. Add all the derivatives of the constraint equations as per
the following order.

• arising out of length constraints.
• arising out of joint constraints.
• arising out of cable constraints.
• arising out of boundary condition.

3. At each step, evaluate the dimension of the null space in
[J]. If the dimension of the null space does not increase by
adding a constraint then that constraint is considered as the
redundant one.
4. Add the boundary constraint. If the dimension of the null
space does not increase by adding the boundary conditions
then that boundary constraint is considered as the redundant
one.
5. Find the rank of the constraint Jacobian [J], which gives
the mobility of the mechanism.

In order to understand the method, some example are given
as follows.

B. Prismatic joint

In three dimensions, a prismatic joint allows only transla-
tional motion in one direction, restrict translational motion in
other two directions and three rotations about the three axes.
In this way it has five constraint equations and possesses one
degree of freedom. Figure 2 shows a prismatic joint connecting
two links ij and km. Here U⃗c is the unit vector along which
the link ij moves relative to link km. As the vectors i⃗j and
i⃗k always maintain a constant angle they produce a constraint
equation. The constant value is not necessarily zero. It depends
on the orientation of the two links taken to develop the
prismatic joint. As per the figure 2, the constraint equations
can be written as follows.

Uc

i j
k

m

Fig. 2. Prismatic joint

L⃗ij × L⃗ik = 0 (1)
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In addition, points i, k and j are in the same direction of the
unit vector U⃗c. Hence, we can write

L⃗ik × U⃗c = 0 (2)

Two links Lij and Lkm also maintain a constant angle through-
out their motion. So it produces one more constraint equation.
Equation 1 and 2 each produces two linearly independent
equations and total four

L⃗ij · ⃗Lkm − LijLkm cosα = 0 (3)

In this way, a prismatic joint gives five constraint equations
and hence it has one degree of freedom. In two dimensions
the degree of freedom of an element is three, namely two
translations and one rotation. In relative co-ordinates , they
are q = (X , Y , θ). When a prismatic joint is described in
two dimensions, the constraint equations from figure 2 are as
follows

(Xk −Xi)/(Xj −Xi)− (Yk − Yi)/(Yj − Yi) = 0 (4)

(Xj −Xi)(Xk −Xm) + (Yj − Yi)(Yk − Ym) = LijLkm cosα

where, α is the angle between links Lij and Lkm. Revolute
joint has one degree of freedom and hence there are five
constraints between the two connected elements. Revolute
joint can be formed when two links have a common point
and a common unit vector. Here the common unit vector is
U⃗c. Both the links ij and mk are capable of rotating about
the unit vector Uc. In figure 3, as the points m and j are
coinciding, their co-ordinates are found to be always same.
Again, the link mk always maintains a constant angle with the
unit vector U⃗c and hence the dot product is a constant which
produces a constraint. Similarly, the link ij also coincide with
the unit vector U⃗c and hence it produces a constraint. From
figure 3, the equations can be written as follows

m

k

j

UC

i

Fig. 3. Revolute joint

⃗Lmk · U⃗c −Rmk cosπ/2 = 0

L⃗ij · U⃗c −Rij cos 0 = 0

Xj −Xm = 0 (5)
Yj − Ym = 0

Zj − Zm = 0

where, Rmk and Rij are the magnitudes of the vectors ⃗Lmk

and L⃗ij .
When the revolute joint is described in three dimensions it

gives five constraint equations. However, a revolute joint gives
two constraints when the motion and the connected links lie

in a plane. Both are due to the common point on both the
links. If the Figure 3 is described in the X−Y plane then the
constraint equations can be written as follows.

Xj −Xm = 0 (6)
Yj − Ym = 0

As in two dimensions, there are three variables and two
constraints, the degree of freedom is one.

C. System constraint equation

In this paper, we have considered deployable mechanisms
containing only revolute and prismatic joints. In addition,
we have cable constraints where the cable is modeled as a
rigid link. All the constraint equations, namely those from (i)
length constraints, (ii) prismatic joint constraints, (iii) revolute
joints constraints, and (iv) cable constraint can be expressed
collectively as follows.

fj(X1, Y1, Z1, X2, Y2, ....Xn, Yn, Zn) = 0 for j = 1 to nc (7)

where, nc represents the number of constraint equations taking
all the rigid links, all joint constraints and the boundary
constraints. In the above equation, Xi, Yi, and Zi represent
the natural co-ordinates required to define the length and the
joint constraints. The derivatives of the system of constraint
equations give the Jacobian matrix. The Jacobian matrix
contains the co-efficient of the terms like Ẋ1, Ẏ1, Ż1...Ẋn, Ẏn,
Żn. After taking the derivative of the constraint equations, the
resulting equation can be written as

[J ]δX = 0 (8)

where [J ] is the constraint Jacobian matrix and δX=(Ẋ1, Ẏ1,
Ż1...Ẋn, Ẏn, Żn).

III. SYSTEM DESCRIPTION AND MOBILITY ANALYSIS BY
JACOBIAN

The typical deployable mechanisms considered here are a
regular box mechanism and a regular hexagonal mechanism.
Each bay is a closed loop mechanism having six links with a
prismatic joint in diagonal as shown in figure 1. All the bays
are identical and are connected with each other with a small
link for making a closed mechanism. The constraint Jacobian
method is implemented for determining mobility of a single
bay. It is described as follows.

• Length constraint equation

(X2 −X1)
2 + (Y2 − Y1)

2 = L2
1 (9)

(X3 −X2)
2 + (Y3 − Y2)

2 = L2
2

(X4 −X3)
2 + (Y4 − Y3)

2 = L2
3

(X5 − Y1)
2 + (Y5 − Y1)

2 = L2
4

(X6 −X3)
2 + (Y6 − Y3)

2 = L2
5

• Prismatic constraint equation
Previously it has been mentioned that a prismatic joint has five
constraint equations in three dimensions. In two dimensions
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the constraints are only two. The constraint equations for the
prismatic joint, from figure 2, are

(X6 −X1)/(X5 −X1)− (Y6 − Y1)/(Y5 − Y1) = 0 (10)
(X5 −X1)(X6 −X3) + (Y5 − Y1)(Y6 − Y3) = L4L5

where, the points P (X1, Y1),....,P (X6, Y6) are the natural co-
ordinates and L2,...,L6 are the link lengths.

• Boundary constraint equation

From the figure 1 it is clear that the single rectangular bay is
fixed at points 1 and 4. The boundary conditions are

X1 = 0, Y1 = 0, X4 = 0, Y4 = L2 (11)

Following the algorithm presented above and putting the
constraint equations step by step, the details of the Jacobian
matrix analysis of the single bay are obtained. This is shown
in Table 1. The degree of freedom is found to be one and this
agrees with the Grübler’s equations.

Constraints Dimension Dimension of
of [J] Null Space

Length constraints (5,12) 7
Prismatic constraints (7,12) 5
Boundary condition (X1 = Y1 = 0) (9,12) 3
Boundary condition (X4 = 0, Y4 = L) (11,12) 1

TABLE I
JACOBIAN MATRIX ANALYSIS OF A SINGLE BAY

A. The box mechanism

Figure 4 shows a mechanism in the shape of a box. Each
face of this box is a single bay as shown in figure 1. This
mechanism is a closed-loop mechanism and also called a
deployable ring mechanism. The deployment occurs by pulling
the cable used in the prismatic joint. The deployment takes
place in such a way that the change in length in the prismatic
joint in each bay is equal at every instant. As shown in figure
1, each bay has six links, six revolute joints and one prismatic
joint in the diagonal.

Constraints are considered to perform the null space analysis
and for each bay the dimension of null space was evaluated.
The constraint equations developed in this mechanism are
added according to order: Length constraint, Prismatic joint
constraint, Revolute joint constraint, Cable constraint and
finally Boundary constraint. The null space analysis of the box
mechanism is shown in Table II. It can be seen from Table II
that a revolute joint in FACE 4 is redundant. In addition one of
the cable constraints is redundant. It may be noted that if the
order of the constraint equations is changed the redundancy
will appear in the last face of the mechanism.
In the last column of the table II we have mentioned the

number of constraint equations which bring no change in
the dimension of the null space. Basically these equations
correspond to the number of redundant joints and links present
in the mechanism.

Fig. 4. Box mechanism with four bays

Constraints Size of [J] Dimension Redundant
of

Null space components
Length Constraints (20,48) 28 -
Prismatic constraints - - -
FACE1 (23, 48) 25 -
FACE2 (26, 48) 22 -
FACE3 (29, 48) 21 2
FACE4 (32, 48) 20 2
Re volute Joint constraint - - -
FACE1 (36, 48) 16 -
FACE2 (40, 48) 12 -
FACE3 (44, 48) 8 -
FACE4 (48, 48) 8 4
Cable constraint (51, 58) 6 1
boundary constraint (54,48) 3 -
(X1 = Y1 = Z1 = 0)
boundary constraint (57,48) 1 -
(X4 = 0, Y4 = L,Z4 = 0)

TABLE II
JACOBIAN MATRIX FOR BOX

B. The hexagonal mechanism

A hexagonal mechanism with the six bays is shown in figure
5. The same steps as for the box mast case is used for the null
space analysis. One prismatic joint constraint is found to be
redundant in the prismatic joints in two faces. One revolute
joint and one cable constraint is also found to be redundant.
In the last step when the boundary conditions are added,
the dimension of the null space reduces to 1. The degree of
freedom of the hexagonal closed-loop mechanism is found to
be 1. In the basic way it can be said that the number of columns
of the matrix discussed in table III are number of independent
variables associated with the mechanism. In each step we have
taken the constraint equations of a particular type i.e. joint
constraint or length constraint and simultaneously the number
of redundant links and joints have been identified through the
redundant constraint equations. The Jacobian matrix operation
has been done in MATLAB.
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Constraints Size of [J] Dimension Redundant
of

Null space Components
Length constraints (30, 72) 42 -
Prismatic constraints - - -
FACE1 (33, 72) 39 -
FACE2 (36, 72) 38 2
FACE3 (39, 72) 36 -
FACE4 (42, 72) 33 -
FACE5 (45, 72) 30 -
FACE6 (48, 72) 30 2
Re volute joint constraint - - -
FACE1 (52, 72) 26 -
FACE2 (56, 72) 22 -
FACE3 (60, 72) 18 -
FACE4 (64, 72) 14 -
FACE5 (68, 72) 10 -
FACE6 (72, 72) 10 4
Cable constraint - - -
FACE1 (73, 72) 9 -
FACE2 (74, 72) 8 -
FACE3 (75, 72) 7 -
FACE4 (76, 72) 6 -
FACE5 (76, 72) 6 1
Boundary constraint (82, 72) 1 -
(X1 = Y1 = Z1 = 0, )
(X2 = Z2 = 0, Y2 = L)

TABLE III
JACOBIAN MATRIX FOR HEXAGON
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Fig. 5. A hexagonal mechanism with six bays

IV. CLOSED-FORM KINEMATIC SOLUTION OF BOX
MECHANISM

A closed-form equation for a one degree-of-freedom mecha-
nism involves expressing all joint variables in terms of one ac-
tuated joint variable. For over-constrained mechanism it is not
clear how to derive these expressions since some of the joints
and links are redundant and should be removed to determine
these expressions. The numerical algorithm presented in the
previous section indicates the redundant variables and hence
in determining the closed-form expression. In this section, we
present the closed-form kinematic expressions for the box-
shaped deployable mechanism. These expressions have been
derived in their simplest form by making use of the symbolic
manipulation software MAPLE. For the box mechanism shown
in figure 4, all the links are considered to be of same length.
The length constraint equations are

(X1 −X2)
2 + (Y1 − Y2)

2 + (Z1 − Z2)
2 = L2

(X1 −X10)
2 + (Y1 − Y10)

2 + (Z1 − Z10)
2 = L2

Fig. 6. Comparative plot of closed-form solution and ADAMS

(X2 −X5)
2 + (Y2 − Y5)

2 + (Z2 − Z5)
2 = L2

(X5 −X8)
2 + (Y5 − Y8)

2 + (Z5 − Z8)
2 = L2

(X5 −X9)
2 + (Y5 − Y9)

2 + (Z5 − Z9)
2 = L2

(X5 −X6)
2 + (Y5 − Y6)

2 + (Z5 − Z6)
2 = L2 (12)

(X2 −X3)
2 + (Y2 − Y3)

2 + (Z2 − Z3)
2 = L2

(X3 −X6)
2 + (Y3 − Y6)

2 + (Z3 − Z6)
2 = L2

(X5 −X12)
2 + (Y5 − Y12)

2 + (Z5 − Z12)
2 = L2

(X3 −X11)
2 + (Y3 − Y11)

2 + (Z3 − Z11)
2 = L2

Here, we have taken rigid link length constraint equations for two
sides of the whole box. In the same way the length constraint of
the other links in other two sides can be taken. The prismatic joint
constraint equations are obtained using the equations (1) and (2) as

X10 −X1

X5 −X1
=
Y10 − Y1

Y5 − Y1
=
Z10 − Y1

Z5 − Y1
(13)

(X1 −X10)(X9 −X5) + (Y1 − Y10)(Y9 − Y5) +

(Z1 − Z10)(Z9 − Z10) = L2

The actuating joint variable is taken as P(X10,Y10,Z10) and the input
is chosen as Y10. Taking the boundary conditions, i.e., X1=Y1=Z1=0,
the closed-form solutions for three arbitrary chosen points are found
out as
For (X2, Y2, Z2)

T :

X2 =
3L2 − 4Y10 − 4LY10

4

Y2 =
2Y10 − L

2
Z2 = 0

For (X5, Y5, Z5)
T :

X5 =
3L2 − 4Y 2

10

4

Y5 =
2Y10 + L

2
Z5 = 0
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For (X9, Y9, Z9)
T :

X9 =
L

2

√
2L2 − 2Y10 − L

Y9 =
l

4

√
L(L2 − 2Y10 − L)(3L+ 2Y10)

3L− 2Y10

Z9 = 0

In the same way other joints can be expressed in terms of the
actuating joint. The same model with following specification has been
done in ADAMS.

• In the present prototype of the box mechanism, the horizontal,
vertical, and the diagonal lengths of the links are taken as
175cm. As a single link, at a particular point, cannot rotate
about two mutually perpendicular axes at same time, a small
link has been built to connect other links by revolute joints at
each corner of the box mechanism. The length and width of the
small link are taken as 2.5cm and 1cm respectively.

• The two diagonal links are connected by prismatic joint and
the vertical and horizontal links are connected with the revolute
joints along with the small links. A user defined constraint is
given in such a way that the difference between the displace-
ments in each prismatic joint is zero.

• A linear motion, as a function of time, has been imposed in
the actuating joint 10 and simulation is run for 3 second in the
kinematic mode of ADAMS.

Figure 6 shows the trajectory of the joint 2 and 5 with respect to
the input at the actuated joint (Y10). The solid line represents the
trajectory obtained from ADAMS and the dotted line represents the
lines obtained from the closed-form kinematic solution of the box
mechanism. It can be seen that the trajectory obtained from ADAMS
has a little deviation from that of the closed-form solution. The little
deviation is due to the small link present in every corner of the
box mechanism. As described above that it is not possible to put
two rotational joints at a single point and rotate about two different
axes simultaneously. To avoid this problem a small link has been
put between two links of two conjugate faces. We have taken the
co-ordinates of each corner of the mechanism for evaluating the
closed-form kinematic solution and length of the small link has been
neglected. But in ADAMS the length of the small links have been
taken into account. For this reason when we plot the trajectory of
any corner joint with respect to a prismatic joint is not matching
with that of the ADAMS. So the deviation is only due to the length
of the small link incorporated in ADAMS.

V. STATIC ANALYSIS BY CONSTRAINT JACOBIAN

In this section, the stiffness matrix due to the length constraint,
prismatic joint constraint, cable constraint, and stiffness due to
bending has been evaluated. The stiffness due to each constraint is
assembled one by one to get the equivalent stiffness matrix. Finally,
the displacement of the whole mechanism has been found out in the
direction of X , Y and Z, respectively. All the links considered here
are assumed to have the same cross sectional area and are equal in
length. The axial displacement occurs along the neutral axis of the
links and all the links are considered as beams with the rotary and
shear effects neglected. The Euler-Bernoulli beam equation is used.

A. Stiffness matrix for length segment
First the elongation in the axial direction is considered. From the

length constraint equation, the elongation in each structural member,
δL can be related to the system displacement, δX . The equation can
be written as

[Jm]δX = δL (14)

where, the Jacobian matrix [Jm] can be written from the
constraint equations. The matrix [Jm] can be written as


(X1 −X5)/L1 .. .. .. .. .. ...

.. .. .. .. .. .. ...

.. .. .. .. .. .. ...

.. .. .. .. .. .. ...

.. .. .. .. .. .. ...

.. .. .. .. .. .. ...
... .. .. .. .. .. .. .. .. 0
... .. .. .. .. .. .. .. .. 0
... .. .. .. .. .. .. .. .. 0
... .. .. .. .. .. .. .. .. 0
... .. .. .. .. .. .. .. .. 0
... .. .. .. .. .. .. .. .. (Z1 − Z4)/L6


with δX=(δX1, δY1, δZ1, ....δX6, δY6, δZ6)

T and
δL=(δL1, δL2...δL6)

T . The member stiffness matrix, [Sm],
elongation δL and member force δT is related as

[Sm]δL = δT (15)

For axial deflection the member stiffness matrix can be written as

[Sm] =


A1E1/L1 .. .. .. .. 0

0 .. .. .. .. 0
0 .. .. .. .. 0
0 .. .. .. .. 0
0 .. .. .. .. 0
0 .. .. .. .. A6E6/L6


In the above expression Ei is the Young’s modulus, Ai is
the cross-sectional area and Li is the length of the link i, and the
member forces in each link is denoted δT=(δT1, δT2, ...., δT6). The
equilibrium matrix can be represented with the terms of member
forces and external load as

[Jm]T δT = δF (16)

and the applied load can be represented in its different components
as

δF = (δF1x, δF1y, δF1z....δF6x, δF6y, δF6z)
T (17)

Substituting the values of δT and then δL in the above equation, we
get

[Jm]T [Sm][Jm]δX = δF (18)

The above equation (18) can be expressed as

[Km]δX = δF (19)

where, [Km] = [Jm]T [Sm][Jm] represents the elastic stiffness matrix
of six links in one bay.

B. Stiffness matrix due to pure bending
To derive the stiffness matrix due to bending, we consider that

each link has three nodes. The bending angle can be found out by
taking the cross-product of two vectors obtained from each line. In
prismatic joint the bending angle can be obtained by taking the cross-
product of two links which are responsible to produce the joint itself.
The system displacement and the bending angle can be related by a
Jacobian matrix as

[J12]δX12 = δϕ12

[J23]δX23 = δϕ23

[J34]δX34 = δϕ34

[J14]δX14 = δϕ14 (20)
[J15]δX15 = δϕ15

[J63]δX63 = δϕ63

where, [J12], [J23], [J34], [J14], [J15], and [J63] are the Jacobian
matrices, δX12, δX23, δX34,δX14,δX15,δX63 are the vectors rep-
resenting the nodal displacement at each node. It may be noted
that δX12= (δX1, δY1, δZ1, δXm, δYm, δZm, δX2, δY2, δZ2)

T and
all other variables δX23, δX34 etc can be expressed in a similar
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manner. Denoting the bending angles in the global co-ordinate system
by δϕ12, δϕ23, δϕ34, δϕ14, δϕ15, δϕ63, the transformation between
the global and local quantities can be written in terms of the rotation
matrices and we can write

δϕ
′
12 = [R12]δϕ12

δϕ
′
23 = [R23]δϕ23

δϕ
′
34 = [R34]δϕ34

δϕ
′
14 = [R14]δϕ14 (21)

δϕ
′
15 = [R15]δϕ15

δϕ
′
63 = [R63]δϕ63

where, δϕ
′
12....δϕ

′
63 is the bending angles in the local co-ordinates .

The general form of the rotation matrix in the above equation, denoted
by [Rmn], can be obtained as a product of three rotations, ψ, ϕ and
θ about Y , Z and X axis respectively. The simple rotation matrices

are given Rψ=


Cx√
C2

x+C2
z

0 Cz√
C2

x+C2
z

0 1 0
−Cz√
C2

x+C2
z

0 Cx√
C2

x+C2
z

,

Rϕ=

( √
C2
x + C2

z Cy 0

−Cy
√
C2
x + C2

z 0
0 0 1

)

Rθ=

(
1 0 0
0 cos θ sin θ
0 − sin θ cos θ,

)
where, for the two end nodes m and n of the link, Cx = Xm−Xn

L
,

Cy = Ym−Yn
LL

and Cz = Xm−Zn
L

. Using equations (20) in equations
(21), we get the followings

δϕ
′
12 = [R12][J12]δX12

δϕ
′
23 = [R23][J23]δX23

δϕ
′
34 = [R34][J34]δX34

δϕ
′
14 = [R14][J14]δX14 (22)

δϕ
′
15 = [R15][J15]δX15

δϕ
′
63 = [R63][J63]δX63

Considering the bending deformation and neglecting the torsion,
equation (22) can be written as

δϕ
′′
12 = [J1]δX12

δϕ
′′
23 = [J2]δX23

δϕ
′′
34 = [J3]δX34

δϕ
′′
14 = [J4]δX14 (23)

δϕ
′′
15 = [J5]δX15

δϕ
′′
63 = [J6]δX63

The relation between the forces and the moments are given by

δF = [Jn]
T δM

′′
(24)

If the rotation δϕ
′′

in all the links are elastic, the members moments
δM

′′
can be expressed with a diagonal matrix of member stiffness

as

[Sn]δϕ
′′
= δM

′′
(25)

with δM
′′

= δM
′′
12, ....., δM

′′
63)

T and the stiffness matrix is given as
[Sm] =



E1Iz
l1

.. .. .. .. .. .. .. .. .. 0 0

0
E1Iy
l1

.. .. .. .. .. .. .. .. 0 0
0 0 .. .. .. .. .. .. .. .. 0 0
0 .. .. .. .. .. .. .. .. .. 0 0
0 .. .. .. .. .. .. .. .. .. 0 0
0 .. .. .. .. .. .. .. .. .. 0 0
0 .. .. .. .. .. .. .. .. .. 0 0
0 .. .. .. .. .. .. . .. .. 0 0
0 .. .. .. .. .. .. .. .. .. 0 0
0 .. .. .. .. .. .. .. .. .. 0 0
0 .. .. .. .. .. .. .. .. .. E6Iz

l6
0

0 .. .. .. .. .. .. .. .. .. ..
E6Iy
l6


In the above equation E is the Young’s modulus and Iz and Iy are
the area moment of inertia of the cross section about Z and Y axes,
respectively. The diagonal elements are the bending stiffness of all the
links in one bay. As the deflection is due to axial tension, the elastic
stiffness matrix relating to displacement and force can be written as

[Jn]
T [Sn][Jn]δX = δF (26)

and this equation can be written as

[Kn]δX = δF (27)

where, [Kn]=[Jn]T [Sn][Jn].

C. Stiffness matrix due to cable
Generally the cable is added to increase the stiffness in the

structure. In the tight condition the cables are assumed as bars. The
stiffness added due the cables can be taken into account in the whole
stiffness. We have considered two end points of the cable to write the
stiffness matrix. The matrix can be written as follow. [Kc]=AcEc/lc

r2 rs rt −r2 −rs −rt
rs s2 st −rs −s2 −st
rt st t2 −rt −s2 −st
−r2 −rs −rt r2 rs rt
−rs −s2 −st rs s2 st
−rt −st −t2 rt st t2


where, r=Xi−Xj

lc
, s=Yi−Yj

lc
, t=Zi−Zj

lc
, and Ac and Ec are the cross-

sectional area and the Young’s modulus of the cable, respectively. By
combining the stiffness matrix due to length constraint, pure bending
and cables, the elastic stiffness can be written as

[Ks]δX = δF (28)

where, [Ks]=[Km]+[Kn]+[Kc]. An hexagonal over-constrained
mechanism, shown in figure 5, is taken as an example to evaluate
its stiffness. Each links have the same cross-sectional area. The
horizontal links have length 260mm; the vertical links have the
length 400mm and the diagonal links have the 400mm. The co-
ordinate values of the corner points hexagonal mast is given in
Table IV. The cross-sectional area of the links and the cable is
chosen as 200mm2 and 5mm2, respectively. The value of the
Young’s modulus is assumed to be 207 kN/mm2 for the links and
63 kN/mm2 for the cables. The second moment of inertia of the links
in hexagonal structure about Y and Z axis, Iy and Iz are obtained
as 6666mm4 and 1666mm4, respectively from the chosen geometry
and material properties. When the unit load is applied at the joint 2,
the stiffness calculated by the Lagrangian method is 37N/mm in the
X-direction, 56.3N/mm in Y -direction and 78.2N/mm in the Z-
direction, respectively. From the Lagrangian method the deflection at
the point where load is applied is 0.027mm in X-direction, 0.018mm
in Y - direction and 0.013mm in Z- direction. The same model has
also been done in ANSYS for cross checking the correctness of the
method. We have taken the exact dimensions of the links as well as
the material properties in ANSYS environment. The values obtained
in ANSYS are 0.025mm in X-direction, 0.016mm in Y - direction
and 0.009mm in Z- direction respectively. Hence it is cleared that
the Jacobian based constraint method is applicable for static analysis
of any over-constrained mechanisms.
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Joints X-co-ordinates Y -co-ordinates Z-co-ordinates
(mm) (mm) (mm)

1 0 0 0
2 260 0 0
3 390 225.16 0
4 260 450.33 0
5 0 45033 0
6 -130 -225.16 0
7 0 0 400
8 260 0 400
9 390 225.16 400
10 260 450.33 400
11 0 450.33 400
12 -130 225.16 400

TABLE IV
CO-ORDINATE VALUES FOR HEXAGONAL MAST

VI. CONCLUSION

The mobility and kinematics analysis of the mechanisms have been
done basing on the constraint Jacobian matrix. From the Jacobian
matrix the redundant links and joints has been identified through
their corresponding constraint equations. It is observed that the
trajectory obtained from the closed-form equation is matching with
the trajectory obtained in ADAMS. The static analysis has also
been performed by using the constraint Jacobian matrix. The results
obtained through the constraint Jacobian method have been cross
checked by making the same model in ANSYS and results are coming
very close to each other. So the Jacobian constraint approach is
applicable to all types over-constrained mechanism for studying their
mobility, kinematics and statics together.
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