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Abstract—The double wishbone suspension is used com-
monly in high performance vehicles due to its superior kine-
matic response. However, its kinematics is very complicated,
and to the best of the authors’ knowledge, no reported analysis
of the same for the full spatial model of the suspension exists
in literature. This paper presents such a solution, building
upon two key elements in the formulation and solution stages,
respectively: the use of Rodrigue’s parameters to develop an
algebraic set of equations representing the kinematics of the
mechanism, and the computation of Gröbner basis as a method
of solving the resulting set of equations. It is found that the final
univariate equation representing all the kinematic solutions for
a given pair of steering and road profile inputs is of 64 degree
– which explains the complexity observed in the kinematics of
the mechanism. The real roots of this polynomial are extracted,
and the solutions to the kinematic problem are computed for
a particular set of inputs for the sake of illustration of the
proposed formulation. The numerical accuracy of the solutions
is verified by computing the residuals of the original set of
kinematic constraints. The configurations of the mechanism
for the real solutions are shown graphically.

Keywords: Double wishbone suspension, Spatial kinematics,
Polynomial equations, Gröbner basis, Rodrigue’s parameters

I. INTRODUCTION

The double wishbone is a popular suspension architec-
ture for high performance cars. Kinematically, the suspen-
sion mechanism can be modelled as a combination of two
spatial mechanisms: a four-bar, and a five-bar, which are
coupled at the king-pin (see Fig. 1). The design involves
a relatively large number of elements, and thus has a rea-
sonably large design space. This affords better control over
the kinematic response of the suspension. For instance, toe
variation due to road inputs can be significantly reduced by
the proper design of a double wishbone suspension [1]. For
the same reason, however, the kinematics of the mechanism
is significantly complicated. The mechanism possesses two
degrees-of-freedom: one accounting for the steering input s,
and the other accommodating the jounce and rebound,
modelled as the road profile input y, as shown in Fig. 2.
Finding the output or the response of the mechanism to
these inputs, i.e., determining the location and orientation
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Fig. 1. Solid model of the double wishbone suspension
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Fig. 2. Schematic of the double wishbone suspension mechanism
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of the kingpin axis (KPA) for a combination of s, y, is a
formidable task. To the best of the knowledge of the authors,
this problem remains unsolved as yet. As an alternative to y,
the lower A-arm angle, θ, has been used as a surrogate input
to simplify the kinematic analysis [2]. In [3], one of the Euler
angles representing the orientation of the KPA has been used
for the same purpose.

In this paper, a method is presented to find the kinematic
response of the double wishbone suspension (abbreviated as
DWS henceforth) to a combination of road, and steering
inputs. The kinematics of the mechanism is formulated
in an algebraic manner, and the orientation of the KPA
is represented in terms of the Rodrigue’s parameters (
e.g., [4]), c = (c1, c2, c3)

T . Such a formulation, aided by
extensive symbolic computations, eventually leads to a set of
three quartic equations in the three Rodrigue’s parameters.
Attempts to reduce the system of equations further while
retaining all the parameters and variables in their generic
symbolic form proves to be futile at this point. Thus, numeric
values of all the parameters as well as the inputs s, y are
used to render the equations amenable to further analysis.
The Gröbner basis of the ideal generated by these equations
is computed next, leading to a univariate polynomial of
degree 64 in c3. This equation is solved numerically, and
its real roots are processed further to completely determine
the configuration of the DWS for a given set of inputs. The
computational steps for one combination of inputs have been
studied in this paper, and the numerical accuracy of the
solutions have been ascertained by means of a study of the
residuals of the original loop-closure equations.

The rest of the paper is organised as follows: in Sec-
tion 2, the formulation of the kinematic constraints and their
solution is presented in details, with the help of a numerical
example. In Section 3, the paper is concluded.

II. KINEMATIC ANALYSIS OF DOUBLE WISHBONE
SUSPENSION SYSTEM

The eventual success in solving any position kinematics
problem relies upon appropriate kinematic modelling, com-
pact formulation, as well as efficient solution techniques.
The details of these, as applied to the present problem, are
presented in this section. In order to simplify the kinematic
model, standard assumptions, e.g., rigid links, ideal joints,
exact knowledge of all the geometric parameters etc., are
made. The following are assumed further:

• The chassis is considered the fixed or the ground
link in the mechanism.

• The universal joint between the tie-rod and the rack
is replaced by a spherical joint.

A. Geometry of the DWS

The schematic of the DWS mechanism is shown in the
Fig. 2. Three coordinate systems are used to define the
system. The global frame of reference {0} is attached to 0o1

and its Z-axis (denoted by Z0) is along the axis of the
hinges of the lower A-arm. Link 1 moves in the X0Y0 plane.
Two different body-fixed frame of references, namely {1}
and {2}, are attached to 0o2 and 0p1, respectively. The Z1-
axis of {1} is aligned to the axis of the hinges of the upper
A-arm, and Link 3 is confined to the X1Y1 plane. The X2-
axis of {2} is along the link vector 0l2 = 0p2 − 0p1, and
the plane X2Y2 contains the Link 4.

Any vector in the body-fixed frames of reference can
be transformed to the global frame of reference by pre-
multiplying with an appropriate rotation matrix R ∈
SO(3) (e.g., [5]). The rotation matrix 1

0R relates {1} to
{0}, which can be parameterised in terms of the X-Y -Z
Euler angles, (α1, α2, α3) (e.g., [5]):

1
0R = RX(α1)RY (α2)RZ(α3),

where, in general, RX(θ), RY (θ), RZ(θ) represent CCW
rotation through an angle θ, about the axes X , Y , and Z,
respectively. The rotation matrix 2

0R relates {2} to {0} in the
same manner. However, it is parameterised in terms of the
Rodrigue’s parameters, c = (c1, c2, c3)

T ∈ R3 (e.g., [4]).
This is a key step in the kinematic modelling, as it leads to
an algebraic description of the orientation of the KPA, which
in turn, helps in formulating the loop-closure equations in
algebraic terms, as explained in the next subsection.

B. Formulation of the loop-closure equations

The DWS is a combination of a spatial four bar
loop, o1p1p2o2o1, and a spatial five bar loop, o1p1p4p5.
The rack/steering input is given to the point 0p5, and the
road profile input is applied to the point 0p8 (see Fig. 2).
The end points of Link 2 can be expressed as:

0p1 =0o1 +RZ0(θ)[l1, 0, 0]
T , and (1)

0p2 =0o2 +
1
0RRZ1

(ψ)[l3, 0, 0]
T , (2)

respectively. The vector 0l2 can be expressed as:
0l2 =0p2 − 0p1, or (3)
0l2 =2

0R[l2, 0, 0]
T . (4)

From (1-4), one can write:
0o2 − 0o1 +

1
0RRZ1(ψ)[l3, 0, 0]

T −RZ0(θ)[l1, 0, 0]
T

− 2
0R[l2, 0, 0]

T = 0. (5)

Equation (5) models the kinematics of the four-bar
loop o1p1p2o2o1. The LHS of (5) is written compactly as:

η1 = (η1x, η1y, η1z)
T , (6)

where η1x, η1y and η1z are given by:

η1x =− l2
(
c21 − c22 − c23 + 1

)
− c∆l1 cos θ + c∆o2x+

c∆l3 cosα2(cosα3 cosψ − sinα3 sinψ), (7)
η1y =− 2l2(c1c2 + c3) + c∆l3(cosψ(sinα1 sinα2 cosα3

+ cosα1 sinα3) + sinψ(cosα1 cosα3−
sinα1 sinα2 sinα3))− c∆l1 sin θ + c∆o2y, (8)
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η1z =− 2l2(c1c3 − c2) + c∆l3(cosψ(sinα1 sinα3−
cosα1 sinα2 cosα3) + sinψ(cosα1 sinα2 sinα3+

sinα1 cosα3)) + c∆o2z, and (9)

c∆ = 1 + c21 + c22 + c23. The end points of Link 5 can be
expressed as:

0p4 =0p1 +
2
0R[rl2, 0, 0]

T + 2
0R

2l4, and (10)
0p5 =[p5x + sx, p5y + sy, p5z + sz]

T , (11)

where rl2 is distance between 0p1 and 0p3; 2l4 =
(l4x, l4y, l4z)

T (expressed in {2}), and 0s = (sx, sy, sz)
T

is the rack input vector in {0}, given by:

0s =3
0R[s, 0, 0]T , where

3
0R =RX(β1)RY (β2)RZ(β3),

i.e., (β1, β2, β3) are X-Y -Z Euler-angles relating {3} to
{0}. The vector 0l5 can be expressed as:

0l5 = 0p5 − 0p4.

The closure equations of the five bar loop o1p1p4p5o1 can
be reduced to a single scalar equation:

(0p5 − 0p4) · (0p5 − 0p4)− l25 = 0. (12)

The expression on the LHS of (12) is denoted by η2. From
the road input to the lower A-arm loop, o1p1p6p8, one can
write:

[p8x + x, p8y + y, p8z + z]T − 2
0R

2l6 − 2
0R[ρl2, 0, 0]

T−
RZ0(θ)[l1, 0, 0]

T − 0o1 = 0, (13)

where x, z are the components of displacement of 0p8 in {0}
as a consequence of s and y departing from their initial
values; 2l6 = (l6x, l6y, l6z)

T = 2p8− 2p6. The parameter ρ
is the fraction of distance between 0p1 and 0p6 of l2, given
by: ρ = ‖0p6−0p1‖/l2. The expression on the LHS of (13)
is of the form:

η3 = (η3x, η3y, η3z)
T , (14)

where η3x, η3y and η3z are given by:

η3x =− l2ρ
(
c21 − c22 − c23 + 1

)
− l6x

(
c21 − c22 − c23 + 1

)
− 2l6y(c1c2 − c3)− 2l6z(c1c3 + c2)+

c∆ (−l1 cos θ + p8x + x) , (15)
η3y =− 2l2ρ(c1c2 + c3)− 2l6x(c1c2 + c3)−

l6y
(
−c21 + c22 − c23 + 1

)
− 2l6z(c2c3 − c1)+

c∆ (−l1 sin θ + p8y + y) , (16)
η3z =− 2l2ρ(c1c3 − c2)− 2l6x(c1c3 − c2)−

2l6y(c1 + c2c3)− l6z
(
−c21 − c22 + c23 + 1

)
+

c∆ (p8z + z) . (17)

The five equations, namely (7-9), (12), (16), define the
kinematics of the DWS mechanism.

TABLE I. DETAILS OF THE LOOP-CLOSURE EQUATIONS OF THE

DWS

Equation LHS Variables Size (kb)
(7) η1x c1, c2, c3, cos θ, cosψ, sinψ 1.664
(8) η1y c1, c2, c3, cosψ, sin θ, sinψ 1.952
(9) η1z c1, c2, c3, cosψ, sinψ 1.888
(12) η2 c1, c2, c3, cos θ, sin θ 78.232
(16) η3y c1, c2, c3, sin θ 2.944
(15) η3x c1, c2, c3, x, cos θ 3.280
(17) η3z c2, c1, c3, z 2.880

Fig. 3. Sequence of elimination of cos θ, sin θ, cosψ and sinψ

C. Linear elimination of variables

The variables included and the sizes1 of the equations
obtained in the Section II-B are summarised in the Table I.
The sequence of elimination of variables needs to be chosen
so as to reduce the complexity of the resulting equations.
To begin with, it is noted that all the seven equations are
linear in terms of sines and cosines of the angles θ, ψ.
Therefore, these trigonometric variables are eliminated first
in a sequential manner, as shown schematically in Fig. 3.
The details of the eliminations are presented below.

First, sin θ is computed from (16), and substituted in (8).
The functions η1y and η1z are linear in terms of sinψ
and cosψ. Hence (8), and (9), are solved linearly to ob-
tain sinψ and cosψ. The variable ψ is eliminated using
the identity sin2 ψ + cos2 ψ − 1 = 0, which gives rise to
the equation f1(c1, c2, c3) = 0. Note that f1 is free of any
other unknowns than those mentioned explicitly. Similarly,
the expressions of sinψ and cosψ are substituted in (7), to
obtain cos θ. Using the expressions of sin θ and cos θ, the
variable θ is eliminated using the identity sin2 θ + cos2 θ −
1 = 0, which leads to the equation f2(c1, c2, c3) = 0.
Finally, The expressions of sin θ and cos θ are substituted
in (12), to obtain the equation f3(c1, c2, c3) = 0.

The functions fi are all quartic in ci, and they are also

1. All the symbolic computations have been performed using the commer-
cial computer algebra software, Mathematica. The “size”, in this context,
refers to the amount of computer memory needed to represent/store an
expression in Mathematica’s internal format.
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TABLE II. GEOMETRIC PARAMETER VALUES OF THE DWS
(FROM [7], WITH MINOR MODIFICATIONS)

Parameter Symbol Value
Lower A-arm l1 0.420
Knuckle l2 0.162
Upper A-arm l3 0.260
Tie rod l5 0.519

Euler angles relating {1} to {0} (α1, α2, α3)

(−2π

180
,
−π
180

,
3π

180

)
Euler angles relating {3} to {0} (β1, β2, β3)

(
2π

180
,
π

180
,
−3π

180

)
Link 4 vector w.r.t. {2} (l4x, l4y, l4z) (0,0.103,0)
Origin of {0} 0o1 (0,0,0)
Origin of {1} 0o2 (0.130,0.160,0)
Initial position of 0p5 (p5x, p5y, p5z) (0.010,0.020,-0.400)
Initial position of 0p8 (p8x, p8y, p8z) (0.480,-0.050,0)
2l6 w.r.t. {2} (l6x, l6y, l6z) (-0.209,0.007,-0.030)
‖0p1 −

0p3‖ as a fraction of l2 r 0.473
‖0p1 −

0p6‖ as a fraction of l2 ρ 0.312

symmetric in ci. They may be written compactly as:

f1(c1, c2, c3) =

4∑
i=0

4∑
j=0

4∑
k=0

uijkc
i
1c
j
2c
k
3 , (18)

f2(c1, c2, c3) =
4∑
i=0

4∑
j=0

4∑
k=0

vijkc
i
1c
j
2c
k
3 , (19)

f3(c1, c2, c3) =
4∑
i=0

4∑
j=0

4∑
k=0

wijkc
i
1c
j
2c
k
3 ; (20)

where i, j, k = 1, . . . , 4, i+ j + k ≤ 4.

The coefficients uijk, vijk and wijk in (18-20) are func-
tions of the geometric parameters of the DWS. These are
obtained symbolically in Mathematica, and simplified us-
ing the monomial-based canonical form [6]. The sizes of the
polynomials after simplification are 79.216 kb, 114.392 kb
and 77.856 kb respectively.

D. Solution of the three quartic equations

It would be ideal indeed to solve (18-20) for the most
general case, i.e., keeping all of their coefficients in symbolic
form. However, attempts to eliminate two of the three re-
maining variables to obtain a univariate in the third variable
in terms of symbolic coefficients did not succeed. Hence
these equations are solved only for given numerical instances
of design parameters (given in Table II), and inputs (s, y).
The solution procedure used, however, is semi-analytical in
nature, and involves the computation of the Gröbner basis
(e.g., [8]) generated by the ideal F = 〈f1, f2, f3〉. This
prevents the degree-explosion, which happens otherwise, if
pair-wise resultants are computed. The details of this final
stage of elimination and solution are presented in the rest of
this section. The inputs used are s = 0.1m, y = 0.05m for
all the numerical computations.

1) Numerical forms of (18-20): After the substitution of
the numerical values as mentioned above, (18) becomes:

f1n =0.049c41 − 0.980c2c
3
1 − 11.369c3c

3
1 + 0.093c31+

2.183c22c
2
1 + 347.686c23c

2
1 + 10.979c2c

2
1+

47.804c2c3c
2
1 − 5.515c3c

2
1 + 0.139c21 − 1.076c32c1

− 11.369c33c1 − 47.795c22c1 + 3.556c2c
2
3c1+

47.989c23c1 + 3.460c2c1 − 12.093c22c3c1−
691.088c2c3c1 − 12.875c3c1 + 0.102c1 + 0.073c42
+ 0.049c43 + 12.484c32 − 0.093c2c

3
3 − 0.980c33+

347.734c22 + 0.139c22c
2
3 + 11.760c2c

2
3 + 2.183c23+

12.484c2 − 0.102c32c3 − 5.611c22c3−
47.998c2c3 − 1.076c3 + 0.073. (21)

The numerical coefficients are next converted to their ra-
tional forms in an approximate manner, up to a tolerance
of ε = 10−10. This renders them better suited for the
symbolic manipulations needed in the computation of the
Gröbner basis. For instance, the expression for f1n becomes:

f1r =
4721c41
97017

− 132775c2c
3
1

135544
− 1096375c3c

3
1

96433
+

10299c31
111025

+

793562c22c
2
1

363439
+

30167705c23c
2
1

86767
+

12880845c2c3c
2
1

269453
−

319509c3c
2
1

57932
+

10558c21
76165

− 68680c32c1
63853

−

1096375c33c1
96433

− 5198665c22c1
108771

+
419065c2c

2
3c1

117844
+

5112722c23c1
106539

+
313424c2c1

90583
− 1316081c22c3c1

108830
−

51441166c2c3c1
74435

+
16468c1
161679

+
9305c42
128217

+
4721c43
97017

+

1274857c32
102121

− 10299c2c
3
3

111025
− 132775c33

135544
+

32579566c22
93691

+
10558c22c

2
3

76165
+

1090489c2c
2
3

92728
+

793562c23
363439

+
1274857c2
102121

− 16468c32c3
161679

−

815519c22c3
145336

− 5954237c2c3
124051

− 68680c3
63853

+

9305

128217
− 761467c3c1

59145
+

1677065c2c
2
1

152759
. (22)

The functions f2 and f3 are treated similarly to obtain
the corresponding expressions f2r and f3r with rational
coefficients.

2) Computation of the Gröbner basis and final solution:
The Gröbner basis of 〈f1r, f2r, f3r〉 with the lexicographical
order c1 � c2 � c3 consists of three polynomials: g1(c3),
g2(c2, c3), and g3(c1, c3), respectively. Among these, g1 is
a univariate polynomial in c3 of degree 64:

g1 =a0c
64
3 + a1c

63
3 + · · ·+ a64 = 0. (23)

Each of ai are long integers; for instance, a0 has 5924 digits.
The polynomials g2, g3 are linear in c2 and c1, respectively.
Expressions for c2 and c1 can be obtained as:

c2 =m2/n2, (24)
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TABLE III. VALUES OF θ, ψ, x AND z AND RESIDUALS OF (5), (12) AND (13) FOR s = 0.1m, y = 0.05m

c1 c2 c3 θ ψ x z Residuals×10−11

‖η1‖ |η2| ‖η3‖ × 10−6

-2.488 -3.312 1.358 0.351 0.519 -0.015 0.018 1.936 3.324 1.430
0.259 0.369 1.361 0.385 0.577 -0.064 -0.021 6.102 3.056 2.081
1.503 -13.694 -4.705 -0.0606 -1.093 0.097 0.018 1.661 1.271 1.734
-0.183 -0.621 -8.162 -0.0611 -1.093 0.093 -0.039 19.741 4.834 5.594

(a) c = (−2.488,−3.312, 1.358)T (b) c = (0.259, 0.369, 1.361)T

(c) c = (1.503,−13.694,−4.705)T (d) c = (−0.183,−0.621,−8.162)T

Fig. 4. Configurations corresponding to the real solutions of (18-20) for s = 0.1m, y = 0.05m

c1 =m1/n1, (25)

where m1, m2 are polynomials in c3 of degree 63 and n1,
n2 are integers. The extraction of the real roots of (23)
using the Mathematica routine NSolve2 yields c3 =
1.358, 1.361,−4.705,−8.162. These solutions for c3 are
substituted back in (24-25) to obtain the corresponding

solutions for c2 and c1:

c2 =− 3.312, 0.369,−13.694,−0.621;
c1 =− 2.488, 0.259, 1.503,−0.183.

The solutions of c1, c2 and c3 obtained from (23-25)
are back-substituted in (7-9) and (15-17) to compute the

2. In order to obtain accurate solutions with NSolve, the “WorkingPre-
cision” parameter is needed to be set to a high value of 200 in this case.
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corresponding solutions for θ, ψ, x and z. Numerical values
of these variables are listed in the Table III. The residuals
of the original loop-closure equations are also listed in
the Table III, demonstrating the numerical accuracy of the
solutions obtained. The configurations of mechanism for the
real solutions of c1, c2 and c3 are shown in Fig. 4. As can
be seen there, only one of the solutions, namely, the one
depicted in Fig. 4(a), is realisable from a physical standpoint.

It may be noted here that the actual number of real
solutions to this problem for a generic input is not known
at this point. The univariate equation in c3 is of degree 64,
and it is possible that it has some roots at infinity at all
configurations, leading to a lower limit for the number of
possible real solutions. It may also be possible to factor the
equation, leading to the identification of different assembly
modes. However, all of these require much deeper study of
the set of equations derived in this work, and it is too early
to make any objective remark in this regard.

III. CONCLUSIONS

This paper presents a complete study of the position
kinematics of the double wishbone suspension mechanism.
Such a kinematic solution scheme is essential for detailed
analysis or design of the suspension mechanism. The kine-
matic formulation used in this paper utilises an algebraic
parametrisation of the orientation of the KPA. Using a
simple scheme of elimination, the original set of five simul-
taneous algebraic-trigonometric equations, which define the
kinematic constraints, are reduced to a set of three quartic
equations. The solution of this reduced set of polynomial
equations is done by computing the Gröbner basis of the
ideal formed by the polynomials, which includes a univariate
polynomial of degree 64. The numerical solutions obtained
are verified by computing the residuals of the original set of
equations at the solution point. Configurations of the DWS
for all the real solutions obtained at a given set of inputs are
shown graphically.

The main contribution of the paper is the solution of the
position analysis problem of the DWS in its full complexity,

perhaps for the first time in reported literature. The key
motivation behind this has been to develop a kinematics
back-end, to support detailed analysis/optimisation of the
DWS design, as well the study of its dynamics. While the
present work attains the stated objective, it still relies upon
very intensive, and specialised symbolic computations3, e.g.,
Gröbner basis computations and solutions of polynomial
equations of high degree. In the future, it would be attempted
to obtain the same solutions in the general case, purely by
means of standard numerical computations.
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