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Abstract—Topology optimization with polygonal meshes is
promising since checkerboards, point-flexures, layering and
islanding like singularities get circumvented by the natural
imposition of the geometric, ’edge-connectivity’ constraint.
However, numerous notches get retained on the boundaries of
optimal topologies obtained from polygonal tessellations. Pre-
vious efforts on Material Mask Overlay Strategy (MMOS) that
used hexagonal cells and negative masks have either ignored
boundary smoothing, have used it as a post processing step,
or have implemented it between the gradient and stochastic
searches. Here, we embed boundary smoothing within each
iteration of gradient search permitting true evaluation of the
objective and the associated sensitivities for all intermediate
topologies. Smoothing is performed in a number of steps
(represented by parameter β) by systematically shifting the
nodes at the boundaries of the continuum. Consequently, some
hexagonal cells get degenerated which necessitates their re-
modeling into Wachspress pentagonal or quadrilateral finite
elements to avoid singularity of the stiffness matrix. Material
assignment to each cell is accomplished using the logistic
function with high values of the material parameter, α approxi-
mating the Heaviside function to yield close to binary solutions.
However, initial use of high material parameter destabilizes
the MMOS since the design sensitivities approach to zero. For
stability, α is increased gradually from 1 to an a priori specified
value αs. Compared to its predecessors, the modified algorithm
shows promise in terms of quality of solutions obtained in least
possible number of function evaluations.

Keywords – Boundary smoothing; Element conversion; Topol-
ogy optimization; Binary solutions.

I. PRIOR WORK

Topology optimization is a method to optimize the ma-
terial layout within the given design domain Ω (Fig. 1). The
domain is specified by its input ports, fixed boundaries, and
output ports to synthesize, e.g., stiff structures and compliant
mechanisms. Positions, magnitudes and directions of the
input loads define the state at input ports ∂ΩI (Fig. 1).
Fixed boundaries ∂ΩF (Fig. 1) are defined by the nature
of constraints on the boundaries. Output port ∂ΩO (Fig. 1)

generally indicates the direction of the desired deformation
in case a compliant mechanism is designed. The main ob-
jective of topology optimization methods is to achieve well
defined boundaries for a single material domain. Topology
optimization is usually implemented through finite element
method for analysis and optimization techniques to syn-
thesize the desired continuum. To date, many approaches
have been proposed for topology optimization. One ini-
tial method is the Homogenization method proposed by
Bendsoe and Kikuchi [1]. Herein, micro-structure features
of the domain control the homogenized properties which
are used to determine the behavior of the design space Ω.
Other popular methods e.g., SIMP (Solid Isotropic Material
with Penalization) [2] employ gradient search processes
explicitly. Rectangular cells are used to discretize the design
domain. Each cell is assigned a design variable ρi. If ρi = 0,
that cell is considered empty (void cell), otherwise if ρi = 1,
the corresponding cell is considered filled with the desired
material. The elastic modulus of a cell is approximated as
Ei=ρni E0, where n is the penalization parameter and E0

is the modulus of elasticity of the material. Here, n ≥ 3
is used achieve binary solutions. However, some grey cells
still remain in the final solutions. PEAK [3] and SIGMOID
[4] are other cell based methods. In these, gradients are
computed and the design parameters are adjusted iteratively
to achieve close to binary solutions. CAMD (Continuous
approximation of material distribution) [5] is a node based
method where each node is assigned the design density
ρnodei . Shape functions are used to approximate the density
of the cells sampled from those at the nodes. In another
node-based approach, Guest [6] uses projection, in which
the densities at nodes are projected by fixed length scales.
Other alternative gradient search procedure like the level set
[7]–[10] and material cloud methods [11] are also proposed.
Many previous approaches use the Lagrangian type i.e.,
triangular and rectangular elements for finite element anal-
ysis suffer from checkerboard patterns. These methods may
also suffer from other connectivity anomalies (geometrical
singularities) like islanding, point flexures and layering.
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Fig. 1: Implementation of topology optimization with negative masks. Domain
(boundary in blue) is shown, discretised with polygonal elements (hex cells) and
negative circular masks (circles in red) laid over it. Polygonal mesh ensures that the
final topology is free from connectivity singularities like the checkerboard, point-
flexure, layering and islanding. Negative circular masks, which are characterized via
three parameters (xi, yi, and ri), are used to remove material from beneath. These are
the design parameters in the Material Mask Overlay Strategy (MMOS). The number of
design variables are reduced compared to SIMP. Polygonal elements, whose centroids
are inside a negative circular mask (i.e., d < rk ) are modeled as void. The remaining
cells are all filled with the desired material. Fixed boundary of the domain, input and
output ports are also shown.

Checkerboards overestimate the strain energy and point
flexures underestimate the same. The main cause for these
geometrical singularities is the presence of single point con-
nections between two diagonally opposite filled rectangular
cells [12]. Direct filtering methods [13], [14] or modified
algorithms [15]–[17] can alleviate these singularities. To
eliminate these unwanted geometrical singularities without
additional procedures dedicated for this purpose, honeycomb
parametrisation was used [12], [18] since this tessellation
gives edge connectivity between any two contiguous cells.
These edge connections ensure finite stiffness at all junc-
tions. However, because of the use of hexagonal cells, many
V-notches get formed on the boundaries. This work aims
at smoothing these boundaries at every stage of the the
gradient search. The remainder of the paper is organized as
follows. Section II describes a brief about Material Masks
Overlay Strategy (MMOS). Section III lays out the boundary
smoothing process. Section IV describes element conversion.
Section V describes the material modeling. Structure stiff
and compliant mechanism problems are described in section
VI. Numerical results and discussion are described in section
VII. Lastly, we have ended with closure.

II. MATERIAL MASK OVERLAY STRATEGY (MMOS)

The Material Mask Overlay Strategy (MMOS) [19]
alleviates geometric singularities and also gives close to
binary solutions. MMOS is based on the principle of photo
lithography, which allows the removal of material from a
group of cells via negative circular masks.

These masks ΩM (Fig. 1) are termed so because they
remove the material beneath them. Three parameters are
required to define position and size of each ΩM . These
are the abscissa (xi) and ordinate (yi) of the centre, and
radius (ri) of the mask. These variables collectively form

a design vector v. If K masks are used, the design vector
(v = (xi, yi, ri), i = 1, ., .....,K) has 3K variables. The
masks help to reduce the number of design variables com-
pared to SIMP. ΩM define the material state of Ω implicitly.
The density ρ(x, y) of all points (x, y) in the domain Ω with
respect to ΩM is described as follows.

ρ(x, y) = 0; if(x, y) ⊂ any ΩM
ρ(x, y) = 1; if(x, y) 6⊂ any ΩM

(1)

ρ(x, y) = 0 implies that space is void and ρ(x, y) = 1
implies that space is filled with the desired material. MMOS
uses hexagonal cells to represent the domain. For finite
element analysis, a hexagonal cell ΩH can be further subdi-
vided into six triangular elements [20], two rectangular ele-
ments [12], [21], or it can be approximated as a Wachspress
hexagonal cell [18], [22]. Cells whose centroids are inside a
negative circular mask (i.e., d < rk) (Fig. 1) are modelled as
void cells and the remaining ones are filled with the desired
material. That is

ρ(ΩH) = 0; if ΩH ⊂ any ΩM
ρ(ΩH) = 1; if ΩH 6⊂ any ΩM

(2)

or,

ρ(ΩH) = 0; if dk − rm ≤ 0 ∀ ΩM
ρ(ΩH) = 1; if dk − rm > 0 ∀ ΩM .

(3)

Previous implementations of MMOS [23], [24] are
computationally expensive because they use genetic
algorithm or alternative stochastic searches. The adaptive
MMOS (AMMOS) [25] allows addition and deletion of
the masks during optimization process. The performance
of circular, elliptical and rectangular masks compared with
MMOS suggests that use of circular masks is better [22].
Gradient search is implemented with MMOS in [26].

III. BOUNDARY SMOOTHING

The solutions obtained using the hexagonal tessellation
have many V-notches on the exterior and interior boundaries.
These notches act as stress concentration regions. Because
of these, the continuum subjected to constant multi-axial
or harmonic forces, can fail. To smoothen these, i.e., to
assuage the notches, boundary smoothing is employed
within each iteration of the optimization algorithm of
MMOS in [26]. Smooth boundaries help in manufacturing
the continuum as well.

Prior works on Material Masks Overlay Strategy
(MMOS) have ignored boundary smoothing, used it as a
post processing step, or implemented it in between the
gradient and stochastic searches [27]. Herein, boundary
smoothing is implemented within each iteration of
gradient search. Although, this implementation permits true
evaluation of the objective and the associated sensitivities
for all intermediate topologies, computations can be time
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consuming. True evaluation of the objective becomes more
important, if deformations are large.

Edges of hexagonal cells along the exterior and interior
boundaries are identified. Mid-points of the hexagonal cells
on the boundary are joined with straight line segments.
Boundary nodes are projected on these respective line
segments along the direction of shortest perpendiculars.
Modified (new) positions of the nodes are connected for
further analysis, without disturbing the original connectivity
of the mesh. This process can be performed multiple times to
achieve higher levels of smoothing. The number of boundary
smoothing steps are represented by parameter β. β can have
only integer values (β ⊂ I) and can be fixed by the user
prior to the analysis or search process. As a consequence of
boundary smoothing, some regular hexagonal cells are either
modified to irregular cells or get degenerated to pentagonal
ΩP or quadrilateral ΩQ cells (Fig. 3). It is this degeneration
that necessitates their remodeling to avoid singularity in the
stiffness matrix.

IV. ELEMENT CONVERSION

Implementation of boundary smoothing affects the nodal
positions of regular hexagonal cells. Some nodes of a cell
can become collinear. Consecutively, a hexagonal cell can
degenerate into a pentagonal or a quadrilateral cell (Fig.
3). Parameter ∨collH is used to identify, if a hexagonal cell
has degenerated to a pentagon or a quadrilateral. ∨collH = 1
indicates that three consecutive nodes of a hexagonal cell
are collinear (Fig. 2a) while ∨collH = 2 signifies that two
groups of three consecutive nodes are collinear (Fig. 2b).
The corresponding elements are modified as follows

ΩH ⇒ ΩmodH ; if ∨collH = 0

ΩH ⇒ ΩP ; if ∨collH = 1

ΩH ⇒ ΩQ; if ∨collH = 2

(4)

here, ΩP represents a pentagonal Wachspress finite ele-
ment and ΩQ denotes a quadrilateral finite element.

V. MATHEMATICAL MODELLING AND GRADIENT
CALCULATIONS

A. Material Modelling

Material assignment is approximated using the logistic
function (Fig. 4a), f(α, t) defined below.

f(α, t) =
1

1 + exp(−αt)
(5)

where α is a parameter, which can be selected either prior
to the analysis or increased gradually (herein, it is increased
gradually with the number of function evaluations (Fig.
4b) to achieve close to binary solutions. t is a variable ∈
(−∞,∞). If α→ +∞, f(α, t)→ H(t), where H(t) is the

(b)
1 2

5 4

3

6 Three consecutive nodes 4, 5 and 6 are collinear.

Three consecutive nodes 1, 2 and 3 are collinear.

Two groups of three consecutive nodes are collinear.

(a)
1 2 3 Three consecutive nodes 1, 2 and 3 are collinear.

One group of three consecutive nodes is collinear.

Fig. 2: Degeneration of a hexagonal cell into either a pentagonal cell or quadrilateral
cell.

Q P

P

P P

PPP

P

Q

H

Fig. 3: Many notches are formed on the boundaries due to the use of a hexagonal
mesh. Midpoints of all boundary hexagonal cells are joined by straight line segments.
Boundary nodes are projected on the respective line segments along the direction
of shortest respective perpendiculars. Modified (new) positions of the nodes are used
for further analysis without disturbing the original connectivity of the hexagonal cells.
This process can be performed multiple times to achieve much smoother contours. The
parameter for boundary smoothing is β, the number of boundary smoothing steps. β
is fixed prior to the analysis /search process and can only have integer values. Because
of smoothing, some hexagonal cells are degenerated into pentagonal or quadrilateral
cells, which necessitates their remodelling by using Wachspress finite elements, to
avoid the singularity of the stiffness matrix. Boundary smoothing is implemented
within each iteration of gradient search permitting true evaluation of the objective and
the associated sensitivities for all the intermediate topologies.

Heaveside function defined as follows
H(t) = 1, ∀ t > 0

H(t) = 0, otherwise.
(6)

To facilitate topology optimization, variable t is defined to
relate all negative masks with the ith cell [26]. The density
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Fig. 4: Material assignment to each polygonal element is accomplished using the
logistic function. For high values of the material parameter α, f(α, t) approximates
Heaviside function to yield close to the binary topologies. However, initial use of
high α destabilizes the topology algorithm since the design sensitivities approach
zero quickly. Therefore, α is initially chosen small (≈ 1) and is gradually increased
with the number of function evaluations to an a prior specified value αs.

of the ith cell is defined as.

ρi =

Ma∏
j=1

1

1 + exp(−α(dij − rj))
+ ε (7)

where Ma is the number of masks, dij =√
(xi − xj)2 + (yi − yj)2 is the distance between the

centres of ΩM and the centroid (xi, yi) of the ith cell, and
rj is the radius of ΩM . For large α

ρi ≈ 0, if any d ij < rj or ΩH ⊂ ΩM
ρi ≈ 1, if all dij > rj or ΩH 6⊂ ΩM .

(8)

and irrespective of the value of α

ρi =
1

2
, if dij = rj for some ΩMand ΩH /∈ all other ΩM

(9)
Equation (9) suggests that cells whose centroids lie very near
or on the boundary of masks, are grey, neither fully void nor
fully solid. Hence, such cells are assigned fictitious material
states. To ensure non-singularity of the global stiffness
matrix in the analysis, a small term ε > 0 is introduce in
(7).
As mentioned previously, for stability of the MMOS, α is
varied as follows.

α = 1 + (αs − 1)(
N

Nmax
)χ (10)

where αs is an a priori specified value (≈ c), N is current
function evaluation number, Nmax is maximum number of
function evaluations and χ is a user chosen parameter.

B. Gradient Calculation

The material layout of the continuum is determined via
locations and sizes of the negative masks. These parameters

change as gradient search progresses. To derive the search,
design sensitivities are needed with respect to design vector
v = (xi, yi, ri), i = 1, ...,K. These gradients are calculated
analytically as follows. Let f0(v) represent either the objec-
tive or constraint relation. Then

∂f0

∂ηk
=

NH∑
H6=1

{
∂f0

∂ρj

}{
∂ρj
∂ηk

}
(11)

were NH is the number of the hexagonal cells and ηk
represents xm, ym or rm for ΩM . Expressions for ∂ρj

∂ηk
, i.e.,

∂ρj
∂xm

, ∂ρj
∂ym

and ∂ρj
∂rm

are obtained as

∂ρj
∂xm

= ρj

[
αexp {−α(djm − rm)}

1 + exp {−α(djm − rm)}

] [
xm − xj
djm + δ

]
(12)

∂ρj
∂ym

= ρj

[
αexp {−α(djm − rm)}

1 + exp {−α(djm − rm)}

] [
ym − yj
djm + δ

]
(13)

∂ρj
∂rm

= −ρj
[
αexp {−α(djm − rm)}

1 + exp {−α(djm − rm)}

]
. (14)

For the existence and uniqueness of ∂ρj
∂xm

and ∂ρj
∂ym

when
djm = 0 a small δ > 0 is introduced in the above equations
[26].

VI. FORMULATION FOR OPTIMAL STIFF STRUCTURES
AND COMPLIANT MECHANISMS

Topology optimization of stiff structures (Fig. 5a and Fig.
5b) and compliant mechanisms (Fig. 5c) can be formulated
as constraint optimization problems. A standard formulation
of stiff structures involves minimization of strain energy (SE)
subjected to the volume constraint. Mathematically, in the
discrete setting

Minimise : SE(ρ) =
1

2
UTKU

Subjected to : V =

Nc∑
i=1

ρi ≤ V 0
(15)

where ρ = ρi represents cell densities, and V and V0 repre-
sent volume fraction and its upper limit respectively. K is the
intermediate global stiffness matrix and U is the correspond-
ing overall displacement (from finite element computation)
of the design domain. From equilibrium, F = KU. Boundary
smoothing is implemented in each iteration, due to which
the affected hexagonal cells are converted into pentagonal
or quadrilateral cells. To find the stiffness matrix of the ith
cell, it is needed to identify its type. ki = ρik0 is calculated
and then the global stiffness matrix K is assembled, where
k0 is the stiffness of the corresponding solid cell. Depending
upon the type of the ith cell, the corresponding local stiffness
matrix is of different size. That is for a hexagonal cell
size of ki is 12×12, while for a pentagonal or quadrilateral
cells they are 10×10 and 8×8 respectively. Finite element
method is employed to determine the overall intermediate
displacement U. Nodal displacements ui for each cell are
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extracted.
Gradient of the strain energy (SE) with respect to the cell
densities is calculated as:

∂SE(ρ)

∂ρi
= −1

2
ui
∂ ki
∂ρi

ui (16)

The derivative of strain energy (SE) with respect to a design
variable ηk is calculated by using chain rule, from (11)

∂SE(ρ)

∂ηk
=

Nc∑
j=1

(
∂SE(ρ)

∂ρj

∂ρj
∂ηk

)
. (17)

where ∂ρj
∂ηk

are given in (12-14).
The flexibility-stiffness multi-criteria objective [31], which
maximises the desired output deformation and minimises the
internal energy to obtain optimal continuum can be stated
as

Minimise : −
[
MSE(ρ)

SE(ρ)

]
= −p

[
VTKU
1
2 UTKU

]

Subjected to : V =

Nc∑
i=1

ρi ≤ V 0

(18)

Here, V is the displacement due to a dummy unit force, ap-
plied in the direction of the desired deformation [32]. Mutual
strain energy (MSE), which is equal to desired deformation,
is calculated by using the virtual work principle. For Fd
as the dummy load vector, Fd = KV. Displacements V are
calculated using finite element method. p is scaling constant.
Gradient of the mutual strain-energy with respect to densities
can be computed as

∂MSE(ρ)

∂ρi
= −(vTi )

∂ki
∂ρi

ui (19)

To determine the derivative of the objective in (18) with
respect to the design parameter

∂

∂ηj

(
−MSE(ρ)

SE(ρ)

)
= −

∂
∂ηj

MSE(ρ)

SE(ρ)
−
MSE(ρ) ∂

∂ηj
SE(ρ)

[SE(ρ)]
2

(20)
To find the right hand side of (20), the following chain rule
is employed.

∂

∂ηj
MSE(ρ) =

NC∑
i=1

(
∂MSE(ρ)

∂ρi

∂ρi
∂ηj

)
(21)

VII. NUMERICAL RESULTS AND DISCUSSION

A. Numerical Results

Three design optimization problems are solved. The first
problem (Fig. 5a) involves designing a stiff beam under a
single constant load, which is applied at the centre of the
lower edge of the beam. Following parameters are used
to achieve the solution (Fig. 6). Mesh size of (60×30)
cells, boundary smoothing steps β = 8, a priori specified

Problem 1

Minimize : 𝑆𝐸 𝝆 =
1

2
𝑼𝑻𝑲𝑼

Subjected to: 𝑉 =  𝑖=1
𝑁𝑐 𝜌𝑖 ≤ 𝑉

0

F

Problem 2

Minimize : 𝑆𝐸 𝝆 =
1

2
𝑼𝑻𝑲𝑼

Subjected to: 𝑉 =  𝑖=1
𝑁𝑐 𝜌𝑖 ≤ 𝑉

0

Problem 3

Minimize : −𝑝
𝑀𝑆𝐸 𝝆

𝑆𝐸 𝜌
= −𝑝

𝑽𝑻𝑲𝑼
𝟏

𝟐
𝑼𝑻𝑲𝑼

Subjected to: 𝑉 =  𝑖=1
𝑁𝑐 𝜌𝑖 ≤ 𝑉

0F

F1
F2

(a)

(b)

(c)

Fig. 5: Classical problems in stiff structure (problems 1-2) and compliant mechanism
(problem 3). Bold arrows represent the applied loads and the direction of desire
deformation ∆. Boundaries constraints are also shown.

Fig. 6: Topology optimized solution with boundary smoothing of problem 1 is shown.
Solution is shown with (left) and without (right) negative circular masks.

value of α, αs = 5, number of masks in the horizontal
direction Nx = 10, number of masks in the vertical direction
Ny = 10, volume fraction V 0 = 0.25, elastic modulus E =
100 MPa, maximum radius (ri) of the masks Rmax = 10
mm, thickness t = 1 mm, poison’s ration µ = 0.30, χ = 2
and applied force F = −30 N. Solution is generated within
150 iterations and 300 function evaluations.
The second problem (Fig. 5b) involves designing of a stiff

beam under multi-loads, which are applied at the centre of
the rightmost edge of the beam. Following parameters are
used to achieve the solution (Fig. 7). Mesh size of (50×31)
cells, boundary smoothing steps β = 10, a priori specified
value of α, αs = 4, number of masks in the horizontal
direction Nx = 10, number of masks in the vertical direction
Ny = 12, volume fraction V 0 = 0.20, elastic modulus E =
1000 MPa, maximum radius (ri) of the masks Rmax = 14
mm, thickness t = 1 mm, poison’s ration µ = 0.30, χ = 2
and applied force F = −20 N. The solution is generated
within 70 iterations and 130 function evaluations.

The third problem (Fig. 5c) involves designing of a
compliant inverter mechanism under a single constant load
applied at the lower leftmost edge of the inverter. Following
parameters are used to achieve the solution. Mesh size of
(40×20) cells, boundary smoothing steps β = 4, a priori
specified value of α, αs = 4, number of masks in the
horizontal direction Nx = 10, number of masks in the
vertical direction Ny = 12, volume fraction V 0 = 0.20,
elastic modulus E = 1000 MPa, maximum radius (ri) of
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Fig. 7: Topology optimized solution with boundary smoothing of problem 2 is shown.
Solution is shown with (left) and without (right) negative circular masks.

Fig. 8: Topology optimized solution with boundary smoothing of problem 3 is shown.
Solution is shown with (left) and without (right) negative circular masks.

Fig. 9: Topology optimized complete solution with boundary smoothing of problem
3 is shown. Solution is shown with (left) and without (right) negative circular masks.

the masks Rmax = 20/3 mm, thickness t = 1 mm, poison’s
ration µ = 0.30, χ = 2 and applied force F = −40 N. The
symmetric half solution (Fig. 8) and complete solution (Fig.
9) are generated within 300 function evaluations.
During the search process in all problems, β is kept constant
and chosen prior to the sequence of analysis. However, for
calculation of the objective and its derivative, the value of α
is varied gradually from 1 to its an a priori specified value
with the iteration. For volume constraint and its derivative,
α is kept constant (=1).

B. Discussion

Our focus is to achieve smooth boundaries along with
close to optimal binary solutions. Smoothness of the

Fig. 10: Topology optimized solution without boundary smoothing of problem 1 is
shown. Solution is shown with (left) and without (right) negative circular masks.

Fig. 11: Topology optimized solution without boundary smoothing of problem 2 is
shown. Solution is shown with (left) and without (right) negative circular masks.

boundary of the topology seems to depend upon the β,
the number of smoothing steps (⊂ I). Close to binary
solutions can be achieved with larger α. However, large α
will lead to numerical instability because most derivatives
in equations (12-14) tend to zero. Therefore, α is varied
gradually with the iterations from 1 to an a priori specified
value αs. This variation maintains small α ≈ 1 in the initial
stages of the algorithm.

1) Observations from solutions: In all solutions, checker-
boards are not observed. This is because of the virtue of
the geometry associated with the hexagonal tessellation. In
all problems which have symmetric loading and boundary
conditions, optimized solutions are such that, masks are
symmetric, due to which the final continuum is also symmet-
ric. The contour of the solutions are smooth and solutions
are close to binary. Solutions with β = 0, i.e., when no
smoothing is employed, are presented in [26] and reproduced
in (Fig. 10 to Fig. 13) for purpose of comparison. Solutions
in (Fig. 6 to Fig. 9) have grey cells on their boundaries. This
is expected since the centroids of the boundary cells are very
close to the mask perimeters. In (Fig. 8), presence of a small
island is observed. Per [26] the strain energy associated with
this region is close to zero.

VIII. CLOSURE

In the proposed new approach, boundary smoothing
is embedded with MMOS [26], in each iteration of the
gradient search process. The smoothness of the boundaries
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Fig. 12: Topology optimized solution without boundary smoothing of problem 3 is
shown. Solution is shown with (left) and without (right) negative circular masks.

Fig. 13: Topology optimized complete solution without boundary smoothing of
problem 3 is shown. Solution is shown with (left) and without (right) negative circular
masks.

is associated with β (⊂ I), which is selected by the user
prior to the analysis. Implementation of boundary smoothing
in each iteration permits true evaluation of the objective
and sensitivities. Close to binary solutions are obtained by
increasing α gradually with iterations from 1 to an a prior
specified value. Numerical instability is avoided by keeping
α close to 1 during the initial stages in optimization. Detailed
investigation on the proposed boundary smoothing approach
are planned for the near future.
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