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Abstract- Remote center motion (RCM) mechanisms 
provide manipulation over a circular arc about a distant 
center point. Different techniques to achieve such RCM can 
be classified as those providing either a virtual RCM or a 
real mechanical RCM. The mechanical RCM mechanisms 
are being used for minimally invasive surgery that imposes 
constraints on the end effector or surgical tool motion. In 
this paper, we propose a novel design (Patent file no.: 
187/MUM/2013) which uses compliant links to generate the 
desired real RCM. Challenge involves generation of real 
RCM in such a way that the cross axis stiffness is very high 
as compared to the desired rotation stiffness with high 
accuracy in maintaining the RCM. The proposed compliant 
remote center motion mechanism (CRCMM) is conceived 
with angular arrangement of two compliant links connected 
to a motion stage. Under the applied force, this arrangement 
makes the links undergo simultaneous bending and twisting 
which results in the desired RCM. Extensive non-linear FE 
analysis is carried out to demonstrate accuracy of the RCM 
for the case under consideration.  Further the mechanism is 
fabricated and preliminary experiments are carried out.  

Keywords—remote center motion; real remote center 
motion; compliant mechanism  

 

I.  INTRODUCTION  

The movement over a circular arc having fixed radius 
about an iso-centric point is defined as remote center 
motion (RCM). RCM synthesis permits rotation around a 
distance fixed point without any physical revolute joint at 
that location [1]. Among different techniques available, 
the most used approaches are virtual and real RCM. In 
virtual case RCM is achieved through computer control 
where mechanism generates RCM virtually without 
having an actual physical constraint using kinematics or 
dynamics of mechanism [2-9]. Even with ease of 
achieving RCM virtually, this method is mostly 
considered as less safe due to violation of dexterous 
workspace under noisy situation. In real case, RCM is 
achieved through a suitable kinematic synthesis [10-15]. 
The mechanically generated RCM benefits with increased 
safety compared to virtual RCM and simplified inversed 
kinematics. Parallelogram mechanism and spherical 
linkage mechanisms are mostly used real RCM 

mechanisms. These RCM based constraint mechanisms 
have several applications like in space, undersea, mining, 
construction, and medical [16]. The famous da Vinci 
robotic system [17] used for laparoscopic surgery is a 
novel designed robot which achieves real RCM using 
parallelogram mechanism. Overall real RCM generated 
using rigid links mechanism have weaknesses of 
mechanical errors and frictional losses while the virtual 
RCM generated through computer control shows 
limitation over the accuracy of tool manipulation under 
noisy situation in addition. In this paper we introduce a 
novel way of achieving real RCM using compliant 
mechanism (Patent file no.: 187/MUM/2013). It can also 
be termed as complaint remote center motion mechanism 
(CRCMM). The proposed CRCMM is conceived with leaf 
flexure links which achieve the desired RCM under the 
application of force which induces simultaneous bending 
and twisting in them because of peculiar boundary 
conditions imposed in design. The design involves the 
challenge of achieving real RCM while keeping high 
stiffness in undesired directions of motion. The use of 
compliant links over rigid links for achieving real RCM 
makes the proposed designed mechanism ‘unique’. 
Compliant nature of these mechanism give them several 
benefits including no friction, no wear and tear, enhanced 
precision, easy control and low power. These benefits are 
especially useful towards high precision surgeries such as 
neural, vitreoretinal surgery. The FE analysis results 
generated in ANSYS confirms the accuracy of desired 
remote center motion. The following sections of paper 
contain the step-by-step synthesis of proposed CRCMM. 

This paper is organized as follows: Section II presents 
step-by-step development of the proposed mechanism 
with one DOF motion with remote center. Section III then 
presents FE analysis with ANSYS to demonstrate that the 
RCM accuracy and parasitic errors obtained with such 
mechanism are negligible even for very high precision 
mechanism. Section IV presents the actually fabricated 
mechanism and details of assembly and experimental 
results confirming the working. Finally, Section V 
concludes the findings.  
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(c) (d) 

 
(e) 

Fig 14: Experimental results 

 
Considering the accuracy at RCM point, the proposed 

mechanism can be successfully implemented for high 
precision minimally invasive surgical cases where 
surgical tool can be mounted on primary stage to achieve 
required constraint manipulation about incision point. 
During surgery, surgeon has to match the RCM point 
generated through mechanism with incision for pivoted 
motion. 

 

V. CONCLUSION 

The novel design of compliant mechanism for remote 
center motion is proposed in this paper. A step-by-step 
design and development is presented. The proposed 
compliant remote center motion mechanism (CRCMM) 
consists of the leaf flexure links arranged at an angle with 
respect to each other. Upon application of force they 
undergo simultaneous bending and twisting to produce the 
desired remote center motion of the stage. The exhaustive 
FE analysis using ANSYS is carried out to demonstrate 
the accuracy of the proposed RCM considering errors in 
motion with respect to fixed desired RCM. Further the 
proposed mechanism is fabricated using recently 
developed assembly techniques and preliminary 
experiments support the proposed findings. The proposed 
designed indicates a potential application in high precision 
minimally invasive surgeries like neural and vitreoretinal 
surgery. 
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Appendix A: 

 
(I) The material properties, dimensions of flexure link used for 

analysis and experiments are as follows, 
 
Material:  
Spring Steel:  E= 2.1E5 MPa, Density=7.85gm/cm3, 
Poisso’s ration=0.29 

 
Dimensions: L=35mm, b=12mm, t=0.15mm, and 

Angle between links of primary stage, θ=18o 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(II) Boundary conditions for flexure link used, 
 

At fixed end: y=0 and dy/dx=0 
At free end: dy/dx=0 

 
Where,  
E: Young’s modulus of material 
L: Length of flexure link in ‘mm’ 
b: Width of flexure link in ‘mm’ 
t: Thickness of flexue link ‘mm’ 
y: Deflection in ‘mm’ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

581




