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Abstract—This paper presents the application of Particle 
Swarm Optimization (PSO) and its variants to the 
dimensional synthesis of 5 coupler paths described by 11 to 
25 precision points. Minimization of the structural error and 
degree of constraint violation were taken as the objective 
functions. In addition to basic PSO, stretched PSO (S-PSO), 
near neighborhood information based PSO (NNI-PSO), 
gregarious PSO (G-PSO) and hybrid PSO with differential 
evolution operator (DE-PSO) were also applied. The results 
revealed that the performance of DE-PSO is superior to 
basic PSO and all other variants for the dimensional 
synthesis. Comparison of the results with other soft 
computing technique for the dimensional synthesis indicated 
that the DE-PSO can be effectively used for the dimensional 
synthesis of four-bar mechanism.  

Keywords—particle swarm optimization; four-bar 
mechanism; dimensional synthesis; structural error; constraint 
violation; success rate 

I.  INTRODUCTION 

One of the simple, but practically important classes of 
mechanisms employed in most of the machines is the 
planar four-bar mechanism. A four bar mechanism (Fig. 
1) consists of four links, viz., a fixed link (L4), a crank 
(L1), a coupler (L2) and a follower (L3).  The required path 
of motion is traced by the extension (L5) link of the 
coupler. The fixed link forms the base of the mechanism. 
The crank is the input link and it is rotated by a power 
source. The path traced by the coupler extension point, M 
for one complete rotation of the crank is shown in Fig. 1. 
By varying the dimensions of the links (L1, L2, L3, L4, L5), 
coupler extension angle (β), angle of the fixed link with 
horizontal (φ) and location of the mechanism (xA, yA), 
various paths of motion of the coupler extension point can 
be obtained. If the desired trajectory of the coupler 
extension point is known, dimensional synthesis of the 
mechanism needs to be carried out to generate this path.  

In recent years, due to increasing computational speed 
of computers, metaheuristics approaches that imitate 
natural phenomena are applied to dimensional synthesis 
problems [1]. Various heuristic algorithms for path 
synthesis have already been reported in the literature such 

as Genetic Algorithm [2-3], Differential Evolution [4-5], 
Ant Colony Optimization [6-7] and Particle Swarm 
Optimization [8]. Dimensional synthesis of four bar 
mechanism based on these stochastic search algorithms 
has outperformed many classical methods of mechanism 
synthesis.  

A relatively new stochastic optimization method is the 
Particle Swarm Optimizer (PSO), which was introduced 
by Kennedy and Eberhart [9]. Many variants of PSO 
algorithms were developed over the years and applied to 
solve the various optimization problems. However, very 
limited attempts have been made to solve the dimensional 
synthesis problem using PSO algorithm. Sedlaczek and 
Eberhard [8] reported the PSO with augmented Lagrange 
multiplier method in combination with an advanced non-
stationary penalty function approach and used it 
successfully for the dimensional synthesis of slider crank 
mechanism with workspace constraints. In this paper, 4 
variants of PSO are applied to solve dimensional synthesis 
problems. A detailed performance analysis of the PSO 
algorithms has been carried out based on statistical 
analysis.  

 

Fig. 1. Geometry of a four-bar mechanism 
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II. ANALYSIS OF FOUR-BAR MECHANISM 

The relevant parameters defining the planar four-bar 
mechanism geometry are shown in Fig. 1. The position of 
the point B is defined by the expressions:  

           xB  = xA + L1 cosθ1,   yB = yA + L1 sinθ1  (1) 

where θ1 is the angle which defines the current position of 
the mechanism. The distance BD = s is defined by the 
expression   

    � = 	���� − 	 �� cos���� + 	 �	� − 	 �	�	 sin ����   (2) 

and it creates the angle θ3 (-π ≤ θ3 ≤ π) with the positive 
direction x-axis: 

                �� = 	 �� tan 
���	�� 		
� ��

��	�� 	��	 ��
�	  (3) 

The position of the follower (the member CD = L3) is 
double valued and it depends on whether the point C is 
below or above the radius vector BD. The coordinates of 
the point C are determined by the expressions: 

                       xC = xA + xD + L3 cos(θ3 – t.γ)                                         

                    yC = yA + yD + L3 sin(θ3 – t.γ)  (4) 

where t is the coefficient whose value is t = 1, for the case 
when the point C is above the line segment s (Fig. 1), and 
t = -1, for the case when the point C is below the line 
segment s (crossed mechanism). γ is the angle created 
between the follower and the line segment s. It takes the 
value (0 ≤ γ ≤ π) and is determined by the expression:   

                       � = 	 cos�� 
���	����	���
�	�	��

�  (5) 

The angle θ2 created between the coupler BC and the 
positive part of the x-axis is determined by the expression 

                        	�� = 	 �� tan 
���	����	�
�  (6) 

Finally, the position of the point M of the coupler, the 
point moving along the desired path, is given by the 
following equations: 

              xM = xA + L1 cosθ1 + L5 cos (θ2 + β) 

            yM = xA + L1 sinθ1 + L5 sin (θ2 + β)  (7) 

III.  DIMENSIONAL SYNTHESIS PROBLEM FORMULATION 

Find optimum dimensions of the links of mechanism 
for the desired rectilinear path traced by the point M (Fig. 
1) of the coupler of the four-bar mechanism so that the 
objective function has the minimum value. Thus, defined 
optimization problem can be given the following general 
mathematical formulation: 

minimize f(X), subject to  gj (X) ≤ 0,  j = 1,…..,ng, 

f(X) is the objective function, gj(X) ≤ 0 represent the 
constraints defined by the search space, ng is the total 
number of constraints. X = [x1, . . . ,xD]T represents the 
design vector consisting of D design variables. The design 
variables are the values which should be defined during 
the optimization procedure. Each design variable is 
defined by its lower and upper boundaries. For the case of 
the four-bar mechanism (Fig. 1), the design vector is  

X = [xa, ya, L1, L2, L3, L4, L5, β, ϕ] T. 

The design objective is to determine the optimal link 
lengths such that the motion generated by the mechanism 
is as close as possible to the desired trajectory. The 
structural error is defined as 

����� = 	������ − ����� + 	 �	�� − 	������

���

 

where, n is the number of synthesis points of interest. (xid, 
yid) and (xig, yig) are the coordinates of the coupler point. 
Subscripts g and d denote a generated parameter and a 
desired value, respectively. The objective function is 
minimized under the condition that the generated solution 
satisfies a set of constraints. The constraints introduced 
herein ensure that the mechanism is assembleable, link 
dimensions fall within a desired range, positions are 
generated in the desired order and the mechanism is 
moveable. Dimensions of the links were limited within 
upper and lower bounds in the PSO algorithm itself. In 
order to ensure that the final solution honors the desired 
order of points, coordinates of the coupler point for the 
considered set of design variables were determined by 
providing a certain angle of increment to the crank 
rotation angle, θ1 to obtain the increasing angle of rotation 
of crank. To ensure that the four-bar mechanism is 
moveable and the drive link is a crank, the dimensions of 
the links must satisfy the Grashof’s condition. Let Ls, LL 
and La and Lb be the lengths of the shortest link, longest 
link, and the other two links, respectively. To ensure that 
the drive link is a crank, the following constraint must be 
satisfied: 

(Ls + LL) < (La + Lb) 

According to Deb [10], the single objective 
constrained optimization problem can be solved by 
formulating two objective functions. One objective is the 
original objective function and other is the degree of 
violation of constraint. 

f1(x) = FError f2(x) = max{0, (Ls + LL) - (La + Lb)} 

If x satisfies all the constraints, f2(x) = 0. Thus single 
objective dimensional synthesis problem can be 
transformed into the following two objective optimization 
problem: 

Minimize { f1(x), f2(x)} 

During the process of selection of the best individual, the 
following selection scheme is used: 

1. If the second objective values of two particles are equal 
to zero (feasible solutions), select the one with the smaller 
first objective value. 

2. If the second objective values of two particles are both 
nonzero (infeasible solutions), select the one with the 
smaller second objective value (smaller constraint 
violation). 

3. If the second objective value of one particle is zero 
(feasible solution), and that of the other is nonzero 
(infeasible solution), choose the one with the zero second 
objective value. 
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IV.  PSO AND ITS VARIANTS 

PSO is developed through simulation of bird flocking 
in multi-dimensional space. The position of i th particle is 
represented in dth dimension of the multi-dimensional 
space with position vector, Xi

d and velocity vector, Vi
d. 

Modification of the particle position is realized by the 
position and velocity information. Each particle tries to 
modify its position by considering current position (Xi

d)k, 
current velocity (Vi

d)k, the individual intelligence (pbest), 
and group intelligence (gbest).  The following equations 
are utilized in computing the new position and velocity for 
the i th particle in dth dimension: 

(Vi
d)k+1 = ω (Vi

d)k + c1 * rand1i
d * (pbesti

d – (Xi
d)k) + c2 * 

rand2i
d * (gbestd –(Xi

d)k)             (8)      

 (Xi
d)k+1= (Xi

d)k + (Vi
d)k+1                       (9) 

where, (Vi
d)k+1 is the velocity at (k+1)th iteration of i th 

particle, (Vi
d)k the velocity at the kth iteration of i th particle, 

ω the inertial weight, c1, c2 are the cognitive and social 
acceleration coefficients, rand1i

d and rand12
d are the 

random numbers selected between 0 and 1, pbesti
d is the 

best position of the i th particle, gbestd the best position 
among the particles (group best) and (Xi

d)k is the position 
of the i th particle at kth iteration. The inertia weight ‘ω’ is 
modified using (10) to enable quick convergence. 

           ω = (ω1–ω2) [(itermax - iter) / itermax] + ω2        (10) 

where, ω1 is the initial weight (ω1 = 0.9), ω2 the final 
weight (ω2 = 0.4), iter the current iteration number and 
itermax is the maximum iteration number.  

Several variations of this basic PSO scheme have been 
proposed in the literature for solving continuous, multi-
dimensional and multi-modal optimization problems [11 - 
12]. They mainly aim to prevent the solution from 
reaching the local optima, avoid premature convergence, 
maintain diversity in the swarm and reduce computation 
effort. The modified techniques are called (1) Stretched 
PSO (S-PSO) [13], (2) Near Neighborhood Interaction 
based PSO (NNI-PSO) [14], (3) Gregarious PSO (G-PSO) 
[15] and (4) Hybrid PSO with Differential Evolution 
operator (DE-PSO) [16]. 

A. S-PSO 

In order to escape from the local minima, two-stage 
transformation equations on the original fitness function 
f(x) is used. This can be applied immediately after a local 
minimum of the function f(x) has been detected. This 
transformation is defined as follows: ���� = ���� + ��‖� − �̅‖���������� − ���̅�� + 1� 

���� = ���� + �� ��������� − ���̅��
tanh 
������ − ���̅��� 

where, γ1, γ2 and µ are arbitrary chosen positive constants 
and sign(⋅) defines the well known triple valued sign 
function. 

B. NNI-PSO 

In order to improve the local exploitation capability, 
global exploration capability and convergence speed, 

velocity updating equation (8) is modified as follows: 

(Vi
d)k+1 = ω (Vi

d)k + c1 * rand1i
d * (pbesti

d – (Xi
d)k) + c2 * 

rand2i
d * (gbestd –(Xi

d)k + c3 * rand3i
d * (pi

d# – (Xi
d)k) 

where, pi
d# is the pbest in the near neighborhood. To 

enhance the efficiency of PSO, equation (10) is changed 
by introducing a power factor (m).  

        ω = (ω1–ω2) [(itermax - iter) / itermax]
m + ω1 

C. G-PSO 

If the Euclidean distance between its current position 
and the global best position is less than ε (a small value), 
the particle’s velocity is re-initialized in the range, [-Vmax, 
Vmax]. Otherwise, the particle will take a step along the 
direction towards the global best position as follows : 

Vi
d = γ  * randi

d * (gbestd – Xi
d) 

where, γ is the step size. The value of step size is linearly 
adjusted at the end of every iteration as follows: 

If the fitness value of the best position of the present 
iteration is less than that of the previous iteration,  

γ  = max(γ - δ, γmin),   else, γ  = min(γ + δ, γmax)  

where, δ is a constant. As the particles do not memorize 
their previous search history, there is no update of 
personal best in G-PSO. 

D. DE-PSO 

In this method, equations (8) and (9) are used at the 
odd iterations and equation (11) at the even iterations. The 
DE mutation operator is defined over the particle’s best 
positions pbesti with a trial point Ti = pbesti which for the 
particles dth dimension is derived as  

If (rand < CR or d = k) then Ti
d = gbestd + δ2

d        (11) 

where, k is a random integer value within [1, number of 
dimensions] which ensures the mutation in at least one 
dimension, CR is a crossover constant (CR ≤ 1) and δ2 is 
the case of  N = 2 for the general difference vector 

�� = 	 1��∆

�

�

 

where, ∆ is the difference between two elements randomly 
chosen in the set. If the fitness value of Ti is better than the 
one for pbesti, then Ti will replace pbesti. After the DE 
operator is applied to all the particles’ individual best 
values, the gbest value is chosen among the pbest set 
providing the social learning capability, which might 
speed up the convergence.  

V. IMPLEMENTATION OF PSO AND ITS VARIANTS 

Coordinates of the following four different paths 
available in the literature [17-19] were considered:  

Example 1: (4.04, 4.29), (4.24, 4.01), (4.23, 3.46), (4.21, 
3.05), (3.89, 2.98), (3.67, 3.20), (3.47, 3.63), (3.35, 4.09), 
(3.34, 4.48), (3.53, 4.58), (3.77, 4.53) : Total 11 precision 
points.   

Example 2: (4.15, 2.21), (4.50, 2.18), (4.53, 1.83), (4.13, 
1.68), (3.67, 1.58), (2.96, 1.33), (2.67, 1.06), (2.63, 0.82), 
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(2.92, 0.81), (3.23, 1.07), (3.49, 1.45), (3.76, 1.87) : Total 
12 precision points. 

Example 3: (0.50, 1.10), (0.40, 1.10), (0.30, 1.10), (0.20, 
1.00), (0.10, 0.90), (0.005, 0.750), (0.02, 0.60), (0.00, 
0.50), (0.00, 0.40), (0.03, 0.30), (0.10, 0.25), (0.15, 0.20), 
(0.20, 0.30), (0.30, 0.40), (0.40, 0.50), (0.50, 0.70), (0.60, 
0.90), (0.60, 1.00) : Total 18 precision points. 

Example 4: (7.03, 5.99  ), (6.95, 5.45), (6.77, 5.03), (6.40, 
4.60), (5.91, 4.03), (5.43, 3.56), (4.93, 2.94), (4.67, 2.60), 
(4.38, 2.20), (4.04, 1.67), (3.76, 1.22), (3.76, 1.97), (3.76, 
2.78), (3.76, 3.56), (3.76, 4.34), (3.76, 4.91), (3.76, 5.47), 
(3.80, 5.98), (4.07, 6.40), (4.53, 6.75), (5.07, 6.85), (5.05, 
6.84), (5.89, 6.83), (6.41, 6.80), (6.92, 6.58) : Total 25 
precision points.   

There are nine independent design variables for the 
optimal synthesis of four bar mechanism. The bounding 
interval of the design variables is given below: 

xa: -5.00 to 5.00; ya: -5.00 to 5.00                                      
L1: 0.10 to 5.00, L2: 1.00 to 10.00; L3: 1.00 to 10.00       
L4: 1.00 to 10.00; L5: 1.00 to 15.00                                    
β: -50º to 350 º; ϕ : -90º to 90º 

Initial particles were selected randomly within this 
range. A swarm size of 60 was considered for running all 
the variants of PSO. The parameter values of different 
variants of PSO are presented below:  

Basic PSO : Initial velocity = -0.5 to 0.5, ω = 0.9 to 0.4, c1 
= 2.0, c2 = 2.0.                                                                      
S-PSO  : Initial velocity = -0.5 to 0.5, ω = 1.0 to 0.4, c1 
= 0.5, c2 = 0.5, γ1 = 5000, γ2 = 0.5, µ = 10-10.                
NNI-PSO : Initial velocity = -0.5 to 0.5, ω = 0.9 to 0.2, c1 
= 1.0, c2 = 1.0, c3 = 2.0, m = 1.2.                                       
G-PSO : Initial γ = 3.0, γ = 2.0 to 4.0, δ = 0.5, ε = 10-8. 
DE-PSO : Initial velocity = -0.5 to 0.5, ω = 0.4, c1 = 2.0, 
c2 = 2.0, CR = 0.9. 

During the process of implementation, the velocity 
components of particle Vi

d are limited to a maximum 
allowable modulus Vmax, as follows: 

��� = 	 �−��� ,				��	��� < ������ ,								��	��� > 	 ������ ,				 !ℎ"#$��"  

The value of Vmax is defined as one half of the total 
search range in each dimension. The position of particles 
in each dimension beyond the specified bounding interval 
was adjusted as follows: 

%�
�
= 	 � %���

�
,			��	%�

�
< %���%��

�
,			��	%�

�
> %��%�

�
,				 !ℎ"#$��"  

All the PSO variants were coded in MATLAB. They 
are allowed to run for a maximum of 10000 iterations. 
The set of design variables which resulted in the best 
objective function value was used for generating the 
trajectory. The data of objective function value by each 
PSO variant were subjected to t-test to determine 
significant difference in the performance of PSO variants.  

VI.  RESULTS AND DISCUSSION 

The optimal values of the design variables of the four-
bar mechanism obtained using variants of PSO for 
generating 4 different trajectories along with the value of 
structural error is presented in Tables 1-4. In general, the 
structural error for the variants of PSO is less than that of 
basic PSO indicating the better search of solution by the 
variants of PSO. The PSO variants, S-PSO, NNI-PSO, G-
PSO and DE-PSO found the best solution almost in the 
same area of the design space. Except for the examples 1 
and 2, they resulted in more or less same values of design 
variables. The path traced by the optimal values of design 
variables are shown in Fig. 2-5. The difference between 
the desired path and the path generated by the design 
variables obtained through the basic PSO is higher than 
that obtained through its variants.  

TABLE I.  OPTIMAL VALUES OF THE DESIGN VARIABLES  
OBTAINED FROM VARIANTS OF PSO FOR THE EXAMPLE 1 

Design 
variables 

Basic 
PSO 

S-PSO NNI-
PSO 

G-PSO DE-PSO 

xA -1.11 -0.73 -2.45 -1.79 -4.88 
yA -5.00 -1.11 -2.73 -1.67 -3.77 
L1 0.56 0.54 0.55 0.52 0.51 
L2 5.56 3.34 4.70 4.08 5.79 
L3 6.17 4.78 5.47 3.72 4.10 
L4 5.55 6.88 8.88 6.89 8.81 
L5 10.28 6.78 9.11 7.90 11.57 

β (deg.) -50.00 2.31 13.35 17.61 17.02 
Φ (deg.) 43.80 6.79 1.92 1.34 2.21 

Error 0.41 0.07 0.05 0.05 0.04 

TABLE II.  OPTIMAL VALUES OF THE DESIGN VARIABLES  
OBTAINED FROM VARIANTS OF PSO FOR THE EXAMPLE 2 

Design 
variables 

Basic 
PSO 

S-PSO NNI-
PSO 

G-PSO DE-PSO 

xA 4.29 4.18 4.11 3.80 4.02 
yA -4.54 -2.83 -2.22 -2.59 -2.59 
L1 0.43 0.50 0.51 0.59 0.54 
L2 4.20 2.88 2.48 3.39 3.34 
L3 4.44 4.82 4.17 5.38 7.25 
L4 8.11 7.12 6.09 8.14 10.00 
L5 6.29 4.44 3.84 4.17 4.18 

β (deg.) 114.04 108.30 105.35 103.18 110.20 
Φ (deg.) -37.20 37.81 -35.50 -35.40 -40.17 

Error 0.89 0.16 0.15 0.16 0.14 

TABLE III.  OPTIMAL VALUES OF THE DESIGN VARIABLES  
OBTAINED FROM VARIANTS OF PSO FOR THE EXAMPLE 3 

Design 
variables 

Basic 
PSO 

S-PSO NNI-
PSO 

G-PSO DE-PSO 

xA -0.42 0.89 1.05 1.36 1.23 
yA -1.01 -0.45 0.05 0.58 0.24 
L1 0.45 0.32 0.24 0.27 0.22 
L2 5.26 7.35 7.93 7.88 8.61 
L3 6.01 6.86 7.46 6.16 7.84 
L4 10.00 1.62 1.06 2.06 1.16 
L5 1.83 1.30 1.03 1.13 1.09 

β (deg.) 33.37 13.02 60.67 157.33 102.29 
Φ (deg.) 4.78 40.54 22.73 -9.66 9.73 

Error 0.08 0.03 0.02 0.03 0.02 
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TABLE IV.  OPTIMAL VALUES OF THE DESIGN VARIABLES  
OBTAINED FROM VARIANTS OF PSO FOR THE EXAMPLE 4 

Design 
variables 

Basic 
PSO 

S-PSO NNI-
PSO 

G-PSO DE-PSO 

xA -0.69 -5.00 -5.00 -5.00 -5.00 
yA 0.78 0.00 -0.02 -0.04 -0.01 
L1 2.03 2.10 2.10 2.10 2.10 
L2 4.32 6.52 6.52 6.55 6.53 
L3 4.80 4.31 4.32 4.36 4.31 
L4 6.81 8.51 8.51 8.58 8.52 
L5 7.32 11.35 11.35 11.37 11.35 

β (deg.) -3.77 -1.44 -1.50 -1.10 -1.42 
Φ (deg.) -2.75 -0.11 -0.06 -0.36 -0.11 

Error 4.64 1.54 1.54 1.55 1.54 
 

The experimental results in terms of the mean 
objective function value, the best objective function value, 
the standard deviation, number of iterations and the CPU 
time are summarized in Table 5. The basic PSO and its 
variants were ranked based on the best objective function 
value. For all the examples, the results in terms of the best 
objective function value of the DE-PSO are much better 
than those of other methods. Also, the mean objective 
function value and the standard deviation are much better 
for most of the examples, which means that the searched 
solutions are more stable. The DE-PSO requires less 
number of iterations than other methods thanks to its 
better searching ability. For all the examples, the basic 
PSO got stuck in the first local minima it encountered 
during the search process. As DE-PSO has the mutation 
operation in the PSO, it generated a long jump using the 
mutation operator and avoided local minima. The 
performance of DE-PSO was followed by NNI-PSO. The 
near neighborhood information of the NNI-PSO helped it 
to find the better solution but it required more number of 
iterations than DE-PSO and its next best PSO variant. G-
PSO searched better solution than that of S-PSO for the 
examples 1 and 2, but for the rest, solution searched by 
the S-PSO was better than that of G-PSO. The G-PSO 
required more number of iterations than S-PSO for all the 
examples. 

Table 6 indicates that DE-PSO is significantly better 
than all other variants of PSO for the dimensional 
synthesis of four-bar mechanism. Eventhough, NNI-PSO 
was found to be better than DE-PSO for the examples 1 
and 4, the t-values are non-significant. Variation in the 
best objective function value obtained through NNI-PSO, 
G-PSO and DE-PSO for the example 4 was found to be 
non-significant. This indicates that for the trajectories 
described by higher number of precision points, use of 
NNI-PSO and G-PSO methods is on par with DE-PSO. 
However, use of NNI-PSO for the dimensional synthesis 
of the example 4 requires 9.6 times higher number of 
iterations and 4.7 times higher CPU time than that of DE-
PSO (Table 5). Similarly, use of G-PSO for the 
dimensional synthesis of the example 4 requires 13.9 
times higher number of iterations and 5.9 times higher 
CPU time than that of DE-PSO. Therefore, the DE-PSO 
method is superior to other PSO methods for the 
dimensional synthesis of four-bar mechanism. The 
success rate of DE-PSO for the examples 1, 2, 3 and 4 
was found to be 10, 18, 18 and 74 % respectively. DE-
PSO needs to be improved for success rate and stability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ----   Desired path  ---   Generated path 

Fig. 1. Path traced by the optimized link dimensions by variants of PSO 
for the example 1.  

Results obtained through DE-PSO were compared 
with the best results obtained through other techniques 
like GA [17], GA-FL [18] and ant-gradient [7] (Table 7). 
It shows that the structural error for other techniques is 
less than 0.04. Further, the optimized design parameters 
were found to be in different area of the design space may 
be due to certain additional constraints imposed on the 
objective function. However, DE-PSO is a simple 

Basic PSO 

S-PSO 

NNI-PSO 

G-PSO 

DE-PSO 
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technique and has lower computational cost as compared 
to other techniques. Therefore, it can be effectively used 
for the approximate dimensional synthesis of four-bar 
mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

----   Desired path  ---   Generated path 

Fig. 2. Path traced by the optimized link dimensions by variants of PSO 
for the example 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  ----   Desired path  ---   Generated path 

Fig. 3. Path traced by the optimized link dimensions by variants of PSO 
for the example 3.  

VII.  CONCLUSIONS 

The performance evaluation of the basic PSO and 
other promising PSO variants for the dimensional 
synthesis of four-bar mechanism was studied. The 
comparative evaluation shows that for the 4 examples 
considered in this paper, all the variants of PSO found the 
optimum solution in the same area of the design space. 
For the trajectories described by higher number of 
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precision points, there was negligible difference in the 
solutions obtained through DE-PSO, NNI-PSO and G-
PSO. In terms of best objective function value and 
stability, performance of DE-PSO was superior to all 
other PSO variants. Therefore, DE-PSO technique can be 
effectively used for the approximate dimensional 
synthesis of four-bar mechanism.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  ----   Desired path  ---   Generated path 
Fig. 4. Path traced by the optimized link dimensions by variants of PSO 
for the example 4.  

TABLE V.  COMPARISON BERWEEN VARIANTS OF PSO 
FOR DIMENSIONAL SYNTHESIS OF FOUR-BAR MECHANISM 

Criteria Basic 
PSO 

S-PSO NNI-
PSO 

G-PSO DE-PSO 

Example 1 
Mean 3.930 2.175 0.337 0.793 0.411 
Best 0.410 0.070 0.045 0.048 0.037 
Std. dev. 0.965 1.449 0.787 1.288 0.767 
Iterations 137 520 784 875 363 
CPU time 25.18 105.06 162.11 137.29 125.36 
Rank 5 4 2 3 1 

Example 2 
Mean 5.791 3.675 2.389 2.937 1.432 
Best 0.885 0.156 0.145 0.153 0.135 
Std. dev.  1.523 2.433 1.808 2.327 1.539 
Iterations 324 737 3638 830 168 
CPU time 68.92 147.72 797.05 160.57 64.77 
Rank 5 4 2 3 1 

Example 3 
Mean 1.167 0.753 0.067 0.160 0.049 
Best 0.083 0.031 0.024 0.032 0.023 
Std. dev. 0.563 0.621 0.049 0.180 0.042 
Iterations 87 415 466 789 323 
CPU time 21.19 107.93 116.22 175.77 153.39 
Rank 5 3 2 4 1 

Example 4 
Mean 36.420 10.569 1.847 4.241 2.575 
Best 4.642 1.544 1.544 1.545 1.544 
Std. dev. 23.826 19.421 0.709 12.569 6.548  
Iterations 151 1247 3033 4391 315 
CPU time 54.20 382.34 951.33 1204.26 202.40 
Rank 5 3 2 4 1 
Overall 
ranking  
(Average 
ranking 
number) 

 
5 
 

(5.0) 
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(3.5) 
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TABLE VI.  T-VALUE BETWEEN BASIC PSO AND OTHER 
VARIANTS 

t-value 
between 

Example 
1 

Example 2 Example 3 Example 4 

Basic PSO and 
S-PSO -7.13 -5.21 -3.49 -5.95 

NNI-PSO -20.39 -10.17 -13.75 -10.26 
G-PSO -13.78 -7.26 -12.04 -8.45 

DE-PSO -20.18 -14.23 -14.01 -9.69 
S-PSO and 

NNI-PSO -7.88 -3.00 -7.77 -3.17 
G-PSO -5.04 -1.55NS -6.47 -1.93 

DE-PSO -7.61 -5.51 -7.99 -2.76 
NNI-PSO and 

G-PSO 2.14 1.31NS 3.50 1.34NS 

DE-PSO 0.48NS -2.85 -2.04 0.78NS 

G-PSO and 
DE-PSO -1.80 -3.82 -4.25 -0.83NS 

TABLE VII.  T-VALUE BETWEEN BASIC PSO AND OTHER 
VARIANTS 

Design 
variables 

Example 1 Example 2 Example 3 Example 4 
GA [18] GA [17] GA-FL [18] Ant-gradient [7] 

xA -2.99 0.77 -3.06 -8.79 
yA -1.62 0.29 -1.30 -1.20 
L1 0.48 1.13 0.42 1.89 
L2 3.37 4.45 2.32 8.41 
L3 6.00 3.62 3.36 6.75 
L4 6.00 3.02 4.07 13.08 
L5 8.71 3.06 3.90 14.45 

β (deg.) 328.96 300.96 -15.60 11.15 
Φ (deg.) -4.45 29.74 -9.10 -21.86 

Error 0.02 0.04 0.006 0.02 
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