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Abstract—Reinforcement learning has been active 

research area not only in machine learning but also in 
control engineering, operation research and robotics in 
recent years. It is a model free learning control method that 
can solve Markov decision problems. Q-learning is an 
incremental dynamic programming procedure that 
determines the optimal policy in a step-by-step manner. It is 
an online procedure for learning the optimal policy through 
experience gained solely on the basis of samples. A Q 
learning based reinforcement learning of a double inverted 
pendulum has been shown in this paper which reaches a 
limit cycle at the end of several learning cycles. The double 
inverted pendulum becomes stable, since the pole angle and 
pole angular velocity become zero. Stabilization of an 
equivalent double inverted pendulum representing a bipedal 
robot has been successfully implemented for balancing the 
pole angles in the required range using Q learning in 
Reinforcement Learning. 

Keywords—Q learning; Double inverted pendulum; Limit 
Cycle. 

I.  INTRODUCTION  

With advances in science and technology, the interest 
to study the human walking has developed the demand for 
building the humanoid robot. By making the robot fully 
autonomous, it can be used in the environments where 
humans cannot enter. Complex movements can be 
achieved by increasing the degrees of freedom. There are 
several methods of designing a stable walking gait pattern. 
The first approach is the inverted pendulum  model control 
method. Another new approach is to use a neuro dynamic 
controller. Q learning can be used to find an optimal 
selection policy for any given Markov decision process. It 
works by learning an action value function that ultimately 
gives the expected utility of taking a given action in a 
given state and following the optimal policy thereafter. 
The reinforcement learning method uses the Q learning 
algorithm, which uses the Q value. The humanoid robot is 
modeled as double inverted pendulum. 

A lot of institutes and researchers are actively working 
towards development of humanoid robot and efforts are 
given to develop the improved control system for 
humanoid robot. 

Zho et al. [1] describe Vague Neural Network based 
control system which is implemented to balance a cart pole 
system. A new reinforcement learning algorithm of neural 

network is proposed. Simulation results of inverted 
pendulum show  that the two output neurons play different 
roles in reinforcement learning, the combination of them 
has an excellent effect on the Q learning result. 

Bogdanov [2] describes optimal control of a double 
inverted pendulum on a cart. Problem of optimal control 
minimizing a quadratic cost function is addressed. Linear 
quadratic regulator (LQR), State dependent ricatti equation 
(SDRE), optimal neural network (NN) control and 
combination of the NN with the LQR and SDRE has been 
tested. 

Kaynov [3] describes about open motion control 
architecture for humanoid robot. This thesis proposes joint 
motion control problem and a new solution to walking 
stability problem for humanoids. A new original walking 
stabilization controller based on decoupled inverted 
pendulum dynamic model is developed. 

Shaoqiang et al. [4] describe modelling and simulation 
of robot based on Matlab/SimMechanics. The 
SimMechanics block model is first used in modelling and 
simulation of inverted pendulum. Simulation results of the 
SimMechanics Block model and mathematical model for 
single inverted pendulum is compared. A full state 
feedback controller is designed to satisfy the performance 
requirement. 

Park et al. [5] describe stabilization of biped robot 
based on two mode Q learning. Two mode Q learning, an 
extension of Q learning is used to stabilize the zero 
moment point of a biped robot in the standing posture. In 
the two mode Q learning, the experiences of both success 
and failure of an agent are used for fast convergence. The 
effectiveness of two mode Q learning is verified by the use 
of real experiment. 

Suleiman et al. [6] describe enhancing zero moment 
point based control model which uses system identification 
approach. The approximation of a humanoid robot by an 
inverted pendulum is one of the most frequently used 
models to generate a stable walking pattern using a 
planned zero moment point trajectory. The accuracy of the 
inverted pendulum using system identification techniques 
has been proposed. 

Kim et al. [7] describe ZMP based neural network 
inspired humanoid robot control. To ensure a steady and 
smooth walking gait of such robots, a feedforward type of 
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neural network architecture trained by the back-
propagation algorithm is employed. 

Asano et al. [8] describe passive dynamic walking 
which is used as a reference model. The control design 
technique used in this study was shown to be effective in 
generating a walking pattern, and its validity has been 
proved by numerical simulations and experiments. 

Oh et al. [9] describe an analytic method to generate 
the real time trajectory of the center of mass is proposed 
for given zero moment point pattern. The whole walking 
process is divided into transient and periodic walking 
phases. For each phase of walking, the analytic solution of 
the center of mass for the given ZMP based on the inverted 
pendulum model is computed. 

Tang and Er [10] describe a planning method for 
humanoid walking. Inverted pendulum model (IPM) is 
used as a dynamic model for humanoid robots. Zero 
moment point constraints of the robot are analyzed in the 
IPM motion, and the COG (center of gravity) motion of 
IPM is to approximate the COG motion of robots. 

Thant et al. [11] present cubic spline interpolation 
based trajectory planning method which is aiming to 
achieve smooth biped robot walking trajectory. The 
walking trajectory of bipedal robot has been achieved 
using cubic spline interpolation. 

Gullapalli et al. [12] present Stochastic real-valued 
(SRV) reinforcement learning algorithm, and it is used for 
learning control, and it can be used with nonlinear 
(multilayer) artificial networks. In the peg-in-hole insertion 
task, SRV network successfully learns to insert a peg into a 
hole with extremely low clearance, in spite of high sensor 
noise. 

Schaal et al. [13] present a probabilistic reinforcement 
learning approach, which is derived from the framework of 
stochastic optimal control and path integrals. The policy 
improvement with path integrals (PI2) is able to efficiently 
learn humanoid motor skills which require full-body 
motion and variable impedance control, and involve direct 
contact with the environment. 

Vijaykumar et al. [14] present the design, construction 
and preliminary testing of a planar bipedal robot with 
joints capable of physically varying both their stiffness and 
damping independently- the first of its kind. A wide 
variety of candidate variable stiffness and damping 
actuator designs are investigated. 

Morimoto et al. [15] present a method for learning 
biped locomotion from demonstration and its frequency 
adaptation using dynamical movement primitives. 
Demonstrated trajectories are learned through movement 
primitives by locally weighted regression, and the 
frequency of the learned trajectories is adjusted 
automatically by a frequency adaptation algorithm based 
on phase resetting and entrainment of coupled oscillators. 

Franklin et al. [16] present biped dynamic walking 
using reinforcement learning. The self scaling 
Reinforcement learning algorithm was developed in order 
to deal with the problem of reinforcement learning in 
continuous action domains. 

Stabilization of double inverted pendulum using Q 
learning in Reinforcement learning was not addressed in 
the previous work. Earlier models did not consider 
stiffness and damping of joints. However in practice the 
motors and gear boxes used have their characteristics in 
terms of stiffness, damping and/or friction. Using these in 
model is also considered. The motivation of this work is to 
develop neuro dynamic control in bi-pedal walking. 

II. MODELLING OF HUMANOID  ROBOT 

Humanoid bipedal walking is often considered in two 
planes by most researcher [1] as Frontal plane biped 
motion and sagittal plane motion. Both of these have 
various phases and the important dynamical conditions 
can be considered in a periodic manner. A Complete 
walking cycle is composed of two phases. These two 
phases are double support phase and single support phase. 
During the double support phase, both feet are in contact 
with the ground. During the single support phase, while 
one foot is stationary with the ground, the other foot 
swings from the rear foot to the front and is shown in 
figure 1. 

 

 
 Fig. 1 Walking Phase of humanoid robot taken from [11] 
 
Walking alternates between a double support phase and 
single support phase. The single support phase faces the 
maximum variation of dynamic/body weight 
transfer/transition during the walking. It is of  most 
interest for researchers. This is initially modelled as 
double inverted pendulum [3]. Humanoid robot can be 
considered as double inverted pendulum during the single 
support phase.  
                  As an initial study for simplified motion 
dynamics of a leg and the humanoid, a double inverted 
pendulum equivalent is considered. Figure 2 shows model 
of such a double inverted pendulum. 
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The equivalences are as follows: 
1. Body mass is at m2. Body is assumed to be rigid. 
2. m1 is the equivalent mass at knee. 
3. Foot is fixed at ‘O’ during the contact part of  

motion. 
 
k1 and c1 are stiffness and damping coefficients 
of joint 1. 

 
Fig. 2 Double inverted pendulum 
 
Where 
l1   = length of first rigid massless link 
l2   = length of second rigid massless link 
m1 = mass of the first pendulum 
m2 = mass of the second pendulum 
θ1   = angle of the first link with vertical 
θ2  = angle of the second link with vertical 
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III.  Q LEARNING CONTROL 

 
Q learning is a recent form of Reinforcement Learning 
algorithm that does not need a model of its environment 
and can be used on-line. Q learning algorithms works by 
estimating the values of state-action pairs. The value Q(s, 
a) is defined to be the expected discounted sum of future 
payoffs obtained by taking action a from state s and 
following an optimal policy thereafter. Once these values 
have been learned, the optimal action from any state is the 
one with the highest Q-value. In Q learning and related 
algorithms, an agent tries to learn the optimal policy from 
its history of interaction with the environment. The 
learning rate α determines to what extent the newly 
acquired information will override the old information. A 
factor of 0 will make the agent not to learn anything, 
while a factor of 1 would make the agent consider only 
the most recent information. The discount factor γ 
determines the importance of future rewards. A factor of 0 
will make the agent “opportunistic” by only considering 
current rewards, while a factor approaching 1 will make it 
strive for a long-term high reward. 
 
Q learning algorithm:  
 
Controller Q – learning (S, A, γ, α) 
 
Inputs 
 
S is a set of states 
A is a set of actions 
 γ is the discount 
α is the learning rate 
 
Local 
 
Real array Q[s, a] 
Previous state s 
Previous action a  
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Initialize Q[S, A] arbitrarily 
Observe current state s 
 
                Repeat 
               Select and carry out an action a 
               Observe reward r and state s’ 
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First pole angle and angular velocities have been divided 
from -0.209 to 0.209 Radian and -2.0933 to 2.0933 
Radian/sec. Second pole angle and angular velocities have 
been divided from -0.1046 to 0.1046 Radian and -1.046 to 
1.046 Radian/sec. The state space for double inverted 
pendulum in Q learning has been shown in Table 1. Pole 
angles θ1 and θ2 are taken in Radian. Pole angular 

velocities 1θ
ɺ and 2θ

ɺ are taken in Radian/second. 

 
Table 1. State space for double inverted pendulum in Q 
learning 
 
 
θ1  
 

 
<-0.21 

 
-0.21, 
-0.11 

 
-0.11, 
0 

 
0, 
0.11 

 
0.11,
0.21 
 

 
>0.21 

 

1θ
ɺ

 

 
<-2.09 

 
-2.09, 2.09 

 
>2.09 

 
θ2  
 

 
<-0.104 

 
-0.104,0.104 

 
>0.104 

 

2θ
ɺ

 

 
<-1.05 

 
-1.05, 1.05 

 
>1.05 

 
Double inverted pendulum system has been divided into 
6*3*3*3= 162 states and action size is just two: clockwise 
torque (τ1) +10 Nm and anticlockwise torque -10 Nm. The 
sampling interval is 0.02 second. The length of first and 
second rigidless link is 0.2 m. The first pendulum is kept 
within ± 0.209 Radian and second pendulum is kept 
within ± 0.1046 Radian. The stiffness and damping 
coefficient of joint 1 is 0.01 N/Radian and 0.001 
NSec/Radian. 
                    The change of mass m2 from Double support 
phase (DSP) to Single Support Phase (SSP) is a function 
of θ1 and θ2. 
m1L = m1R = 0.5 Kg 
m2L = m2R = 4 Kg 
m2 = m2L + m2R = 8Kg 
∆m2 = Change in mass of m2 from SSP to DSP 
       = 8.5-4 
       = 4.5 Kg 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

                                   Fig. 3 Bipedal Robot 

  

Figure 3 shows the model of bipedal robot. There is  

 an increase of θ1 and θ2 when the bipedal robot is 
changing from double support phase to single support   
phase. 
 

IV.  SIMULATION 

The double inverted pendulum task was simulated for 
14,000 iterations using Q learning in Reinforcement 
Learning and it was tested for various parameters: 
learning rate α and discount factor γ. The learning rate 
parameter α and discount factor γ are important factors for 
the agent to learn. Various combinations of learning rate 
and discount factor (0.4, 0.8), (0.5, 0.85) and (0.6, 0.9) 
was tested. A combination of learning rate and discount 
factor of 0.5 and 0.85 resulted the agent to control the 
double inverted pendulum successfully. Simulation of 
double inverted pendulum using Q learning has been 
done.  
                                     Limit cycle is the study of 
dynamical systems with two dimensional phase space. 
Limit cycles occur in non-linear systems. Finally, pole 
angle and pole angular velocity become zero. Therefore, 
the double inverted pendulum becomes stable using Q 
learning in Reinforcement Learning. The results of 
simulation of double inverted pendulum using Q learning 
has been shown in Figure 4. This shows the variation of 

1θ
ɺ vs θ1 in Q learning of double inverted pendulum in Q 

learning. 
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Fig.4 Plot of 1θ
ɺ vs θ1 in Q learning 

 

The variation of 2θ
ɺ vs θ2 in Q learning of double inverted 

pendulum has been shown in Figure 5. Finally, pole angle 
and pole angular velocity become zero. Therefore, the 
double inverted pendulum becomes stable using Q 
learning in reinforcement Learning. 
 

 
 

          Fig. 5 Plot of 2θ
ɺ vs θ2 in Q learning 

 

V. CONCLUSIONS 

In Q learning, an agent tries to learn an optimal policy 
from its history of interaction with the environment. A 
history of an agent is a sequence of state-action rewards. 
Limit cycle behaviour of double inverted pendulum has 
been shown in this paper. The objective of this work is to 
show how double inverted pendulum can be balanced 
using Q learning in reinforcement learning. Finally, pole 
angles and angular velocities become zero. This indicates 
that the double inverted pendulum is stable using Q 
learning in Reinforcement learning. 
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