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Abstract— This paper presents the systematic methods to 
deal with kinematic analysis of 3-PRS configuration parallel 
manipulator involving non-linear simultaneous equations. 
Using the loop closure constraints, three coupled equations 
are formulated using configuration of the manipulator. 
Bezout’s resultant and Sylvester method are used to 
determine roots of three non-linear equations. The tilt of the 
moving platform is measured with respect to fixed base for 
single prismatic joint actuation or any combination of these 
three joints actuations. The maximum tilt of moving 
platform for the proposed configuration is also computed for 
limited range of joints. Tool tip coordinates are determined 
using vector approach with reference to established 
coordinate system on the base platform. Jacobian matrices 
are derived for active and passive variables for singularity 
determination. Using tool tip coordinates for various 
combinations of linear actuations as point cloud, workspace 
for 3 – DOF parallel manipulator is developed. 

Keywords— Parallel manipulators, Bezout’s resultant, 
Jacobian, Singularity, Workspace 

 

I.  INTRODUCTION  

Even though Stewart platform and Hexapod offers 
6-DOF as parallel manipulators (PMs) for some 
applications, the practical usage of 3 DOF PMs due to less 
complex configuration and power requirements for many 
industrial applications may not be neglected.  The 
development of parallel manipulators can be dated back to 
the early 1960s, when Gough and Whitehall [1] first 
devised a six-linear jack system for the purpose of a 
universal tire testing machine. Later, Stewart [2] developed 
a platform manipulator for use as a flight simulator. Since 
1980, there has been an increasing interest in development 
of parallel manipulators. Potential applications of parallel 
manipulators include mining machines [3], walking 
machines [4] and pointing devices [5]. Parallel 
Manipulators (PMs) are widely used due to many inherent 
characteristics over the serial manipulator.  These 
configurations accuracy are very high due to non-
cumulative joint errors as compared to serial manipulators. 
Its payload-to-weight ratio and structural rigidity is 
relatively high because load is carried out by several links 
in parallel. In parallel manipulator the effort is designing 
one kinematic chain which is usually repeated 
symmetrically for whole robot. In conventional machine 

tools like conventional drilling machine, inclined holes are 
difficult to be drilled with higher accuracy without 
orienting the work piece. Moreover, machining on the 
inclined surfaces is also difficult conventionally. The 
machining on prismatic surfaces of work part with 
machine orientation is possible using parallel configuration 
as one of good alternative. Parallel manipulator survey for 
industrial applications, space explorations, food industries, 
medical surgery equipments, mining and many more is as 
reported in [6]. The exponential growth of publication on 
parallel robots in the last five years points to the potential 
embedded in this structure that has not yet been fully 
exploited.  The parallel architecture can also be used for 
earth quake motion simulator [7]. The inverse kinematics 
of new 3-PRS configuration was carried out and same was 
simulated using ADAMS software. The kinematic analysis 
results were compared and reported [8]. Simulation of 3-
RPR, 3-UPS and 3-RPS was carried out to determine the 
torque requirement at time of machining for single and two 
links linear actuation simultaneously [9]. Isotropic or 
singularity condition using the variation of kinematic 
condition index (KCI) from condition number of Jacobian 
matrix (J) was determined after deriving the kinematic 
equations of parallel manipulators [10]. Singularity 
analysis of multi loop platform was investigated and 
geometric condition based on the concept of common 
tangent was highlighted by D. Basu and A. Ghosal [11]. 
Forward and inverse kinematic, dexterity characteristics is 
investigated and reachable workspace is generated for the 
proposed three degree of freedom 3-PRC (Prismatic-
Revolute- Cylindrical) parallel manipulator by Yangmin Li 
and Qingsong Xu [12]. More recently, direct kinematics 
closed form solution of a 4PUS + 1PS parallel manipulator 
using dialytic elimination method to solve univariate eight 
degree polynomial [13]. The size and shape of workspace 
of 3-PPSP 6 DOF parallel mechanism was investigated 
[14] by Whee-kuk Kim et.al. The motivation behind this 
work stems from the fact that the work part positioning and 
orientation is not supportive due to geometric limitation for 
any processing purpose then only alternative left in 
direction of design change of machine or robotic tool. 
Here, effort is put up for such processing operations to be 
performed with parallel manipulator instead of serial 
manipulation even though existence of closed loop may 
complicate its design, analysis and control at all level. In 
this paper parallel manipulator with three degree of 
freedom is considered for its kinematic investigation.  
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II. 3-PRS PARALLEL CONFIGURATION 

A. Manipulator’s Architecture  

A TRIPOD consists of different parts like rotary 
base, fixed base, square cushion rigidly fixed with base, 
recirculating ball screws, connecting links, pins for joints, 
movable platform with attached tool. In each limb of the 
manipulator, ball screw joint with translational motion 
acts as prismatic joint and generated link motion 
transmission through revolute joint and spherical joint at 
last gives a pose for a particular tool attached with moving 
platform. The coupled motion of each limb for the 3-PRS 
configuration is responsible for final pose of the tool, 
which is useful for various manufacturing operations as 
well as in medical science for surgery. The degree of 
freedom (DOF) of the 3- PRS mechanism is calculated by 
using Grübler–Kutzbach criterion: 

DOF = 	λ�n − j − 1� + � f�

�

���

																	(1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Tripod with 3-PRS configuration and rotary base 
 

When no relative motion between fixed and 
rotary base, 
= 6�8 − 9 − 1� + �1 × 3 + 1 × 3 + 3 × 3� = 3 
Here, λ is the degree of freedom of the space utilized for 
mechanism while in operation. In the above configuration 
for spatial motion	λ = 6, n is the number of links of 
mechanism; j is the number of joints of mechanism for; �� 	is the degree of freedom of ���	joints. Therefore, the 
moving platform has instantaneously two rotational 
degrees of freedom and one translational degree of 
freedom along z-axis. The mechanism with active rotary 
base has 4-DOF as  � = 9, (3 recirculating ball screws, 3 
connecting links, 1 moving platform, 1 rotary base and 1 
fixed base for this parallel architecture) and j = 10. 
Spatial 3 – DOF parallel manipulator as shown in fig.1 
consists of a top, moving platform connected to a bottom 
base platform with three ‘legs’. Each limb of symmetric 
parallel configuration consists of a prismatic, rotary and a 
spherical joint (P - R - S). Recirculating ball screws are 
utilized as prismatic joints for the manipulator. Three 
servo motors are attached for these screw joints actuation 
and all other joints are considered passive. It may be noted 

that this is a fully parallel manipulator, since each limb 
has only one actuated joint. By actuating the recirculating 
ball screws, the tilting motion of the top platform can be 
obtained which is connected through three spherical 
joints. For kinematic investigation of a manipulator, the 
rotary base is considered as a passive joint but the same is 
active for work space generation.   

B. Formulations of loop closure equations 

Because the motions of the links are constrained 
by the revolute joints, the connecting links	R�S�, R	S	 
and  R
S
 can only rotate on their corresponding fixed 
planes defined by set of points  	�B�, R�, S�	, �B	, R	, S			and	�B
, R
, S
	.  

Three loop closure equations formed for 
symmetric parallel architecture as shown in fig. 1 are for 
the loops OO1S1R1P1B1O, OO1S2R2P2B2O and 
OO1S3R3P3B3O. Consider the plane OO1S1R1P1B1O, in 
which a loop 1 is investigated for the kinematic analysis 
point of view. 

On XY-plane of the rotary base as shown in fig. 3, 


������������
 = −
√3

2
�����	�̂ + 1

2
������̂ − �������																					(2) 


	�	���������
 =
√3

2
����		�̂ + 1

2
����	�̂ − ����	��																									(3) 



�
���������
 = 	−���	�
	�̂ − ����
	��																																														(4)   

Where,	�, � and � represents the unit vectors along  �, � 
and � axes respectively. The right handed Cartesian 
coordinate system is placed on the base at a centre of 
equilateral triangle. �� is the inclined angle with the �� 
plane and �� as shown in fig. 1. � is the angle of bisection 
of base platform with a magnitude of 30° due to 
equilateral triangle configuration between legs of the 
tripod. When the feeds of the screws (the position of the 
sliders) are given, the direct kinematics problem is defined 
to find the position and orientation of the moving 
platform. The actuated joints are the prismatic (P) joints. 
The linear displacement of nut is represented by	�� . 
Hence, � = ���	�		�
 � be the translational vector of three 
actuated joint variables in the direction of z- axis only. 
The position vectors	!"�	,!"	 and !"
 can be expressed 
as: !"��������
 = −

�

√

���30°�̂ − �

√

���30°�̂ + 	����             (5) 

!"	�������
 =
�

√

���30°�̂ − �

√

���30°�̂ + �	��                        (6) 

!"
�������
 =
�

√

�̂ + 	�
��                                  (7) 

Where, p is the distance between two prismatic joints on 
fixed base. The constraint equations of the 3-RPS 
configuration with a rotary base should satisfy the 
following three constraint equations invariably with the 
fixed length L of the link	R�S�. !!���������
 + !�����������
 = !#��������
 + #�"��������
 + "�
��������
 + 
����������
 = �����
              (8) 

Where, � = 1, 2, 3 
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Fig. 2 Loop - 1 on plane OB�P�R�S�O�O 

 

 

 

 

 

 

 

 

 

Fig. 3 Resolving the link length ���� on XY-plane 

With reference to configuration as shown in the fig. 2 and 
fig. 3, 

|!#�| % |!#	| % |!#
| % &√3 

	|!(�| % |!(	| % |!(
| % &2√3 

The equation (8) is represented in matrix form as, 

X1����
%
+,,
,,--

p20√32 b0 √32 Ucosθ1
- p2√30b2012Ucosθ1T10Usinθ1 ;<<

<<= 

X2����
%
+,,
,,-
p2 -√32 b- √32 Ucosθ2
- p2√30b2012Ucosθ2T20Usinθ2 ;<<

<<= 
 

�
����
 % > 0&√3 ? @ ? �����
�
 0 �����
 A 
In other words, 

����
��������� � ��������������

�

� ���
�����

�

                  (9) 

The distance between any two centers of spherical 
joints at moving platform is equal to q. At last, the 

constraint equations can be rewritten in following form 
using (9), 

B���	��������
B	 % B!������������
 ? !��	���������
B	 % B������
 ? �	����
B	 % C	      (10a) 

B�	�
��������
B	 % B!��	���������
 ? !��
���������
B	 % B�	����
 ? �
����
B	 % C	     (10b) 

B�
����������
B	 % B!��
���������
 ? !������������
B	 % B�
����
 ? ������
B	 % C	      (10c) 

Substituting (8) into (10a), the following form of the 
equations can be derived: T12-2T1T202T1Usinθ1-2T1Usinθ20T22-2T2Usinθ10 2T2Usinθ20U2cos2θ10U2cosθ1cosθ20U2cos2θ20 U2sin2θ1-2U2sinθ1sinθ20U2sin2θ203bUcosθ10 3bUcosθ2-√3Upcosθ1-√3Upcosθ203b2-2√3bp0p2%q2               
                                                                        (11a)             T22-2T2T302T2Usinθ2-2T2Usinθ30T32-2T3Usinθ20 2T3Usinθ30U2cos2θ20U2cosθ2cosθ30U2cos2θ30 U2sin2θ2-2U2sinθ2sinθ30U2sin2θ303bUcosθ20 3bUcosθ3-√3Upcosθ2-√3Upcosθ303b2 ? 2√3@& 0&	 % C	                                                                         (11b)                 T12-2T1T302T1Usinθ1-2T1Usinθ30T32-2T3Usinθ10 2T3Usinθ30U2cos2θ10U2cosθ1cosθ30U2cos2θ30 U2sin2θ1-2U2sinθ1sinθ30U2sin2θ303bUcosθ10 3bUcosθ3-√3Upcosθ1-√3Upcosθ303b2-2√3bp0p2%q2                                                       
                                                                                (11c) 

Equation (11) can be rewritten as the following form, the 
derived equations represents more general case as reported 
by Meng-Shiun Tsai et al. [15]: E��	��� 0 E�	��	 0 E�
��� 0 E����	 0 E�������	 0E�������	 0 E�� % 0																																																							�12G�         E	�	��	 0 E		��
 0 E	
��	 0 E	���
 0 E	���	��
 0E	���	��
 0 E	� % 0																																																							�12@�                       E
�	��� 0 E
	��
 0 E

��� 0 E
���
 0 E
������
 0 E
������
 0 E
� % 0																																																								�12�� 

Using trigonometric formulations and substituting them 
in (12a-12c), 

��� % ����
�

�������� % 	��
�����

H , Where I� % tan	���/2�                  (13) 

�L1	x220L2x20L3�x120�L4	x220L5x20L6�x10L7	x22 0L8	x20L9%0                                                               (14a) �M1	x320M2x30M3�x220�M4	x320M5x30M6�x20M7	x32 0M8	x30M9%0                                                             (14b) �N�	x
	 0 N	x
 0 N
�x�	 0 �N�	x
	 0 N�x
 0 N��x� 0N�	x
	 0 N�	x
 0 N % 0                                             (14c) 
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III.  BEZOUT’S RESULTANT 

Suppose, for the given two uni-variate polynomials �, Q	 ∈ 
�I�\�0	 with deg��� = m and		deg�Q� = n. 
Assuming		m ≥ n, �(I) = R!I! + R!��I!�� + ⋯ + R�I + R",					R! ≠ 0 Q�I� = S#I# + S#��I#�� + ⋯ + S�I + S",										S# ≠ 0 

(15) 

Bezout matrix [14, 15] of �	and	Q is defined by n × n 

symmetric matrix BT��, Q� = Ub� ��V�,��"$��
 is expressed as 

b� �� = Bu"v�����B + Bu�v����	B + ⋯ + Bu%v����%��B 
Where,		Bu&v'	B = u&v' − u'v&, k = min�i − 1, j − 1)� 
and v& = 0, if	p > �	 

OR 

The Bezout’s resultant 
��, Q� = 
�,((�, Q) is the 
symmetric n × n matrix is defined by, 


�(��, Q� = �WXY ZR� R)S� S) Z 
Here, i , j=0, 1, ….n-1 and summation on right side of the 
resultant is taken over all for p and q for which & ≥
max	(� − �, � − �) and & + C = 2� − � − � − 1. 

The equations (14a) and (14c) can be represented as, R	I�	 + R�I� + R" = 0 S	I�	 + S�I� + S" = 0                                                (16) 

Eliminating I� using Bezout’s approach for m = n = 2, 

B	��, Q� = [R*	+�, R*	+",R*	+", R*�+",
\                                          (17) 

= [R	S� − S	R� R	S" − S	R"R	S" − S	R" R�S" − S�R"
\ = [y� y	

y	 y

\ 

Where, R	 = L�	x	
	 + L	x	 + L
	, R� = L�	x	

	 + L�x	 + L�	,	 R" = L�	x	
	 + L�	x	 + L 	, S	 = N�	x


	 + N	x
 + N
	, S� = N�	x

	 + N�x
 + N�	, S" = N�	x


	 + N�	x
 + N  

Using formulation (17), ]� = ^�I		I
	 + ^	I		I
 + ^
I		 + ^�I	I
	 + ^�I	I

+ ^�I	 + ^�I
	 + ^�I
 + ^ 							(18G) ]	 = #�I		I
	 + #	I		I
 + #
I		 + #�I	I
	 + #�I	I

+ #�I	 + #�I
	 + #�I
 + # 							(18@) ]
 = E�I		I
	 + E	I		I
 + E
I		 + E�I	I
	 + E�I	I

+ E�I	 + E�I
	 + E�I
 + E 									(18�) 

Using the determinant of the 2×2 Bezout’s matrix of (17), 
the resulting equation becomes (19) and using it with 
(14b), _�I	� + _�I	
 + _
I		 + _	I	 + _� = 0               (19) `
I		 + `	I	 + �̀ = 0                            (14b) 

Where,		`
 = (�	I
	 + (	I
 + (
	 

	 	̀
	

= (�	I
	 + (�I
 + (�	 	 �̀ = (�	I
	 + (�	I
 + (  

Bezout’s matrix for these non linear simultaneous 
polynomial equations with coefficients I and J with 
different degrees m = 4	and	n = 2 is represented in 
following matrix, the resultant is determinant of the 
matrix, 

>_� �̀ − _
`
 _� �̀ − _
`	 − _	`
 −_	`	 − _�`
 −_�`	_�`	 − _�`
 _� �̀ − _
`
 −_	`
 −_�`
`
 `	 �̀ 0

0 `
 `	 �̀

A  
      														(20)                        _�	`
� − U_�_	`	 + 2_�_
 �̀ − _		 �̀V`

 + U_�_
`		 +

3_�_� �̀`	 + 2_�_� �̀
	 − _	_
 �̀`	 − 2_	_� �̀

	 + _
	 �̀
	V	`
	 −U4_�_� �̀`		 − _	_� �̀`		 − 3_	_� �̀

	`	 − _
_� �̀
	`	 −

2_
_� �̀

 + _�_�`	
 + _�	 �̀


V	`
 + _�_�`	� − _	_� �̀`	
 +_
_� �̀
	`		 − _�_� �̀


`	 + _�	 �̀
� = 0																																	�21�  

The above equation is 16th order equation containing 
only a variable	I
. Solution of the equation gives 16 roots 
containing positive, negative and imaginary roots. The 
imaginary and negative values of roots are discarded as the 
physical configurations are not possible. Two values of the 
variable I		G�a	I� is computed for the corresponding 
value of	I
. There are 16 values of x3 variables, out of 
which 4 are real positives, which are considered for further 
computation. Using expression (16) and (19), the value of I� and I	 is calculated respectively.  

IV.  SINGULARITY ANALYSIS 

In general, the three loop closure equations (11a) to 
(11c) is represented as, 

g��T�, T	, T
, θ�, θ�, θ
� = 0,						i = 1,2,3																(22)                 

Where, T�, T		and	T
are active and θ�, θ�, θ
 are 
passive joint variables 

By differentiating loop closure equations, the joint rates 
relationship is determined. bQ�b�� b��bY +

bQ�b�� b��bY = 0																														(23) 

In matrix form the relation is represented as, 

+,,
,,,
-bQ�b�� bQ�b�	 bQ�b�
bQ	b�� bQ	b�	 bQ	b�
bQ
b�� bQ
b�	 bQ
b�
;<

<<<
<= c�d��d	�d
e +

+,,
,,,
-bQ�b�� bQ�b�	 bQ�b�
bQ	b�� bQ	b�	 bQ	b�
bQ
b�� bQ
b�	 bQ
b�
;<

<<<
<=	c�d��d	�d
e = 0	 

      (24) 

The above relation is expressed as,  �` f�d g + �`∗ f�dg = 0                                                 (25) 

Where, �` is jacobian matrix of dimension	3 × 3. �`∗ is 
also a square matrix of the same dimension for the 
configuration under consideration. The jacobian matrix �`  
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is determined by differentiating three equations (11a) to 
(11c) by active joint variables	�� , 

�` = h^�� A�	 0

0 A		 ^	


A
� 0 ^
	

i                        (26a) 

Where, ^�� = 2T� − 2T	 + 2Us�� − 2Us�	 

A�	 = 2T		– 	2T�	– 	2Us�� 	+ 	2Us�	 

A		 = 2T		– 	2T
 	+ 	2Us�		– 	2Us�
 

A	
 = 2T
 − 2T	– 	2Us�	 	+ 	2Us�
 
A
� = 2T� − 2T
 + 2Us�� − 2Us�
 

A
	 = 2T
 − 2T� − 2Us�� + 2Us�
 

By differentiating loop closure equations (12a to 12c) 
with respect to passive joint variables	θ� , the three 
equations can be written in matrix form as follows and the 
matrix is denoted by �J∗  

�`∗ = h#�� #�	 0

0 #		 #	
#
� 0 #



i                      (26b) 

jℎXkX, 

B11=E�
	��� − E����� − E����	��� + E�������	 

B12=E����	 − E�	��	 − E�������	 + E����	��� 

B22=E	
��	 − E	���	 − E	���
��	 + E	���	��
 

B23=E	���
 − E		��
 − E	���	��
 + E	���
��	 

B31=E

��� − E
���� − E
���
��� + E
������
 

B33=E
���
 − E
	��
 − E
������
 + E
���
��� 

The obtained jacobian matrix �`∗   is same as reported 
by D. Basu and A. Goshal [11]. By analyzing the Jacobian 
matrix of a manipulator, the singular configurations of the 
robot are determined. The determinant of jacobian matrix 
equal to zero represents the manipulator with a singular 
configuration. Usually, the mobility of a manipulator is 
reduced near a singularity.  

Case studies: 

Assumed configuration parameters are: p=0.75; U=0.482; 
q=0.3; b=0.041; T1=0.16; T2=0.16; T3=0.16; TL=0.175 

Case 1: Only one screw is actuated by 0.02 units which 
is T1=0.14 unit from base (Refer fig. 1) 

The resultant 16th order equation is, 

23.4602x3
1604.2382	x3

15	-0.5525x3
14

-2.2488x3
13 

-14.5661x3
12	-0.3318x3

110	4.7297x3
100	0.2469x3

9 

+0.3063x3
8+0.0063x3

7-0.1409	x3
6-0.0053x3

5 

-0.0129x3
4-0.0004x3

3=0                                  (27) 

TABLE 1: PASSIVE JOINT ANGLES FOR SINGLE ACTUATION �1 �2 �3 det_J det_J* 
62.8949 63.0021 63.0021 0 0.0221 

23.5081 20.8027 63.0021 0 0.0031 
62.8950 63.0021 63.0021 0 0.0221 
23.5080 20.8027 63.0021 0 0.0031 
64.2304 64.2340 61.7091 0 0.0236 
22.1054 19.4738 61.7091 0 0.0032 
64.2304 61.7091 19.4738 0 -0.0238 
-11.0281 -13.6969 19.4738 0 -0.0025 

Case 2: All screws are actuated with different 
magnitudes of 0.3, 0.4 and 0.2 units from assumed level.   23.4870	x3

1606.3613	x3
15-0.2221	x314-3.3540x3

13 

-14.7671x3
12	-0.5088x3

11
+4.7399x3

100	0.3713x3
9 

+0.3135x3
800.00096	x3

7-0.1410x3
6-0.0079x3

5 

-0.0130x3
4-0.0007x3

3=0                                            (28) 

TABLE 2: PASSIVE JOINT ANGLES FOR MULTIPLE ACTUATIONS WITH 
DIFFERENT MAGNITUDES �� �	 �
 det_J det_J* 

63.0278 62.9491    62.9521    0 0.0221    
22.0871    23.4520    62.9521    0 0.0030 
63.6114 63.5577 62.3767 0 0.0229 
21.4711 22.8173 62.3767 0 0.0031 
64.2480 64.2208 61.7189 0 0.0236 
20.7884 22.1156 61.7189 0 0.0032 
62.3615    63.6265    18.8347         0 -0.0240   
-12.9452   -11.6105   18.8347         0 -0.0025   

Tool is attached with the moving platform at its centre. 
Using vector approach, the coordinates of the tool tip is 
computed for the known value of linear actuation and tool 
length (TL). 

For case 1: Determination of tool tip coordinates  

The computed angles using Bezout’s approach are, 
θ� = 62.8949°, θ	 = 63.0021°	and	θ
 = 63.0021°.	 

Using equation (8), the values of vectors	 
X�����
 = �−0.1493, −0.0862,0.5691�, 
X	����
 = �0.15, −0.0866,0.5895� and 

 X
����
 = �0, 0.1732,0.5895�. Each vector represents 
point lies on the plane or plane parallel to the tilted moving 
platform. The tilt of the moving platform with reference to 
base can be computed from the angle between normal 
vector of moving and base platform.  The normal vector is 
the cross product between the two vectors lies in that 
plane. The normalized normal vector is	−0.0680	ı	�
 	−
0.0393	ȷ	�
 	+ 	0.9969	k�
. Tool tip coordinates are 
determined using centre point coordinates, tool length and 
normalized normal vector. As shown in fig. 4,  

A� =
X�
����� + X�

�����

2
	 , B� =

X������+ X�
�����

2
 

nA = 
�B���� − B�����× 	 �A���� − B�����
 ∙ 
�A���� − A����� × �B���� − B�����
 

nB = 
�A���� − A�����× 	 �A���� − B�����
 ∙ 
�A���� − A�����× �B���� − B�����
 

d			 = 
�A���� − A����� × �B���� − B�����
 ∙ 
�A���� − A����� × �B���� − B�����
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Fig. 4 Top view of moving platform 

The Moving platform centre coordinates are, 

O� = A��
� + �nA/d�UA��
	 − A��
�V																														(30)                             

Tool tip coordinates are found out using tool length, 
centre coordinates of moving platform and normalized 
normal vector of moving platform as, 

O��
-�& = O��
� + TL	 r X�X	���������
 	× X�X
���������
BX�X	���������
 	× X�X
���������
Bs																				(31) 

Tool tip coordinates (-0.0117, -0.0067, 0.7571) are 
determined using the coordinates of centre point	O�, for a 
specified tool length and direction cosines of the normal 
vector	N	. The another simple approach is determination 
of centre of a circle inscribed in equilateral triangle, 

!� =
�����
 + �	���
 + �
���


3
																																					(32) 

Workspace is developed using point cloud of such tool 
tip coordinates subsequently. Synchronized tool tip 
coordinates for its position and orientation is important 
during the machining while working on prismatic surface 
with contouring. 

V. SYLVESTER’S METHOD 

Two different non-linear simultaneous equations with 
degree	m = 4	and	n = 2, the corresponding Sylvester’s 
matrix is: 

S&,' = 	
+,,
,,
-I� I� I
 I	 I� 0

0 I� I� I
 I	 I�
J
 J	 J� 0 0 0

0 J
 J	 J� 0 0

0 0 J
 J	 J� 0

0 0 0 J
 J	 J�;<
<<<
=
																																 �33� 

Here, one can easily see that in Bezout’s approach the size 
of the matrix is 4	 × 	4, but in Sylvester’s theory the size 
of the matrix is 6	 × 	6. So the computation process for 
solving Sylvester’s matrix is too lengthy and time 
consuming compared to that of the Bezout’s matrix. The 
result obtained through this method is also same as 
Bezout’s resultant. 

VI.  WORKSPACE DEVELOPMENT 

Parallel manipulators have smaller workspace 
compared to serial manipulator as found from various 
literatures [12, 14, 17]. The workspace means set of all 
spatial coordinates of the centre of the moving platform or 

tool tip positions for entire working range of active joints 
actuation. The workspace analysis is always imperative to 
avoid singular configurations. Moreover, many facts can 
be observed to enhance the parallel manipulator 
configuration further. The generated workspace is always 
constrained due to joint-angle limitations, link-length 
limitations with regard to structural bending, space 
constraints or any joint-interference. It is always desirable 
to analyze the shape and volume of the workspace for the 
particular application requirements point of view. It is 
difficult to express complete workspace as it does not 
reveal actual tool tip orientation information of the 
machine tool, which is essential for user at time of 
machining in many cases for physical constraints 
avoidance. For proposed configuration, position 
coordinates are captured for limiting range of spherical 
joints movement to avoid interference between link and 
mobile platform as well as recirculating ball screws as 
translational actuators. Linear actuation of individual legs 
with magnitude T1, T2 and T3 for the range of 0.1 unit 
with step size of 0.01 unit is applied for determination of 
tool tip coordinates. The obtained position coordinates (x, 
y, z) of tool tip are exported to excel program. The 
coordinate’s data are captured for the rotary base positions 
of (ϕ"): 0˚, 30˚, 60˚, 90˚, 120˚. A 3-PRS configuration 
repeats the same coordinates for any angular increment 
after 120˚ due to its axi-symmetry nature. The workspace 
of parallel manipulator is developed using such tool tip 
point clouds process sequentially as shown in fig. 5. Using 
MATLAB by reading excel file and 3D-surface is 
generated using surf command as shown in fig. 6. 
Similarly, linear actuation of pair of legs with magnitude 
T1 and T2, T2 as well as T3 and T1 simultaneously for 
same range and step size is applied without time lag for 
determination of tip coordinates. It means both legs are 
acuated simultaneously and at same position with 
reference to fixed base at any time. The tool tip 
coordinates are captured in excel file. Using MATLAB 
program, the workspace is developed after sequential 
processing of tool tip coordinates data captured earlier. It 
is observed that inner surface is generated through 
actuation of two screws, while outer surface is generated 
due to actuation of single leg as shown in fig. 7. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Sequential processing of captured tip coordinates with single leg 
actuation for workspace generation 
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Fig. 6 Work space generation using individual link actuation with 
constant velocity for 3-PRS 

 
Fig. 7 Workspace for all possible combination of link actuation with 

constant velocity & without lag for 3-PRS 
The generate workspace has almost similar shape as 
reported by L W Tsai and Sameer Joshi [20] for 3DOF 
spatial mechanisms. 

VII.  CONCLUSION 

The kinematic analysis of 3-PRS parallel 
manipulator is carried out using vector algebra and three 
loop closure equations are formulated. The solutions of 
these three non linear higher order loop closure equations 
are worked out using BEZOUT’S resultant and 
SYLVESTER’S method. The obtained results are same 
but the Bezout’s resultant less time consuming compared 
Sylvester method due to its higher size matrix problem.  
The tool-tip coordinates are captured and exported in 
excel format. The exported results were opened out using 
file operations in MATLAB software. The 3-dimensional 
surface of the exported result is plotted, which is the 
workspace of the 3DOF parallel manipulators end-
effector. The singularity analysis is carried out and 
jacobian matrix is derived. Normally, near the singular 
configurations parallel manipulator’s experiences poor 
performance. Singularity can be a kind of situation where 
the manipulator has additional uncontrollable DOF or loss 
of any existing DOF. Algebraically, singularities represent 
rank deficiency of Jacobian matrix if two elements of any 

row or column of 	�J∗  matrix becomes zero. The parallel 
manipulator with 3-DOF with rotary base using 3-RPS 
configuration can be used for machining tasks on 
prismatic surfaces, inclined drilling, slotting operations 
with narrow range and in medical science that require 
high dexterity, high accuracy, high loading capacity and 
considerable stiffness.  

APPEENDIX 

Coefficients of (12) 

��� = 3�� � √3	��	, ��� � 3�� � √3�� ,  

��� � 2���� � ���,	��� � �2���� � ���	,  

��	 � ��, ��
 � �2��,  

��� � 2�� � �� � ��� � ���� � 3�� � 2√3�� � �� 

��� = 3�� � √3	��, ��� � 3�� � √3��, 

��� � 2���� � ���, ��� � �2���� � ��� 

��	 � ��, ��
 � �2��, 

��� � 2�� � �� � ��� � ���� � 3�� � 2√3�� � �� 

��� = 3�� � √3	��, ��� � 3�� � √3��,  

��� � 2���� � ���, ��� � �2���� � ��� 

��	 � ��, ��
 � �2��, 

 ��� � 2�� � �� � ��� � ���� � 3�� � 2√3�� � �� 

Coefficients of (14) 

�� � ���� � ��� � ��	 � ���, 	�� � 2���,	 

�� � ���� � ��� � ��	 � ���, �� � 2���,	 

�	 � 4��
	, �
 � ��, �� � ��� � ��� � ��	 � ���,		 

�
 � 2���, 	�� � ��� � ��� � ��	 � ���	 

!� � ���� � ��� � ��	 � ���, 	!� � 2���, 

!� � ���� � ��� � ��	 � ���, !� � 2���,	 

!	 � 4��
	, !
 � !�, !� � ��� � ��� � ��	 � ���, 

	!
 � 2���, 	!� � ��� � ��� � ��	 � ���	 

"� � ���� � ��� � ��	 � ���, 	"� � 2���, 

"� � ���� � ��� � ��	 � ���, "� � 2���,	 

"	 � 4��
	, "
 � "�, "� � ��� � ��� � ��	 � ���,	 

"
 � 2���, 	"� � ��� � ��� � ��	 � ���	 

Coefficients of (18) 

#� � ��"� � ��"�, #� � ��"	 � ��"�, #� � ��"
 � ��"�		 

#� � ��"� � �	"�,#	 � ��"	 � �	"�, #
 � ��"
 � �	"�		 

#� � ��"� � �
"�,#
 � ��"	 � �
"�, #� � ��"
 � �
"�		 

$� � ��"� � ��"�,$� � ��"
 � ��"�, $� � ��"� � ��"� 

$� � ��"� � �
"�,$	 � ��"
 � �
"�, $
 � ��"� � �
"�		 

$� � ��"� � ��"�, $
 � ��"
 � ��"�, $� � ��"� � ��"�		 

�� � ��"� � ��"�,�� � ��"
 � ��"	, �� � ��"� � ��"
		 

�� � �	"� � �
"�,�	 � �	"
 � �
"	, �
 � �	"� � �
"
		 

�� � �
"� � ��"�,�
 � �
"
 � ��"	, �� � �
"� � ��"
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Coefficients of (19) 

%	 = &�'�� + &�'�� + &�'�� + &�'� + &											 

%� = &
'�� + &�'�� + &
'�� + &�'� + &��								 

%� = &��'�� + &��'�� + &��'�� + &��'� + &�		 

%� = &�
'�� + &��'�� + &�
'�� + &��'� + &��	 

%� = &��'�� + &��'�� + &��'�� + &��'� + &�	 

&� = #��� − $�$� 

&� = #��� + #��� − 2$�$� 

&� = #��� + #��� + #��� − 2$�$� 

&� = #��� + #��� − 2$�$� 

&	 = #��� − $�$� 

&
 = #��� + #��� − 2$�$� 

&� = #��	 + #��� + #��� + #	�� − 2$�$	 − 2$�$� 

Z8=A1C6+A2C5+A3C4+A4C3+A5C2+A6C1-2B1B6-2B2B5 

        -2B3B4 

&� = #��
 + #��	 + #	�� + #
�� − 2$�$
 − 2$�$	 

&�� = #��
 + #
�� − 2$�$
 

&�� = #��� + #��� + #��� − 2$�$� − $�$� 

Z12=A1C8+A2C7+A4C5+A5C4+A7C2+A8C1-2B1B8-2B2B7 

        -2B4B5 

Z13=A1C9+A2C8+A3C7+A4C6+A5C5+A6C4+A7C3+A8C2+A9C1 

        -2B1B9-2B2B8-2B3B7-2B4B6-B5B5 

Z14=A2C9+A3C8+A5C6+A6C5+A8C3+A9C2-2B2B9-2B3B8 

        -2B5B6 

&�	 = #��� + #
�
 + #��� − 2$�$� − $
$
 

&�
 = #��� + #��� − 2$�$� 

&�� = #��
 + #	�� + #��	 + #
�� − 2$�$
 − 2$	$� 

Z18=A4C9+A5C8+A6C7+A7C6+A8C5+A9C4-2B4B9-2B5B8 

         -2B6B7 

&�� = #	�� + #
�
 + #
�
 + #��	 − 2$	$� − 2$
$
 

&�� = #
�� + #��
 − 2$
$� 

&�� = #��� − $�$� 

&�� = #��
 + #
�� − 2$�$
 

&�� = #��� + #
�
 + #��� − 2$�$� − $
$
 

&�� = #
�� + #��
 − 2$
$� 

&�	 = #��� − $�$� 
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