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Abstract— Robotics is an important area not only in 
research and development but also from the perspective of 
industrial automation. As a result, increasing number of 
fundamental and advanced level robotics courses are being 
introduced in the undergraduate and postgraduate 
curricula, particularly in Mechanical and Electrical 
engineering streams. Robot kinematics is the cornerstone of 
such courses and it is equally challenging for teachers to 
teach as well as students to learn, as the concepts such as 
Denavit-Hartenberg (DH) parameters, robot kinematic and 
dynamic analyses, trajectory planning, etc. are difficult to 
understand. Various robotics learning software and tools 
have been developed by researchers around the world. One 
such attempt is made here to develop software called 
RoboAnalyzer. It can show animated DH parameters and 
performs forward and inverse kinematics, and dynamic 
analyses on serial robots. In this paper, a new module named 
“Virtual Robot Module” is reported which consists of 17 
CAD models of commercially available industrial robots. 
Joint-level and Cartesian-level jogging can be performed on 
these robots. Relative and absolute motion of the end-
effector can be achieved in the Cartesian space by 
controlling the position as well as the orientation of the end-
effector. RoboAnalyzer software is freely available for 
academic purposes from http://www.roboanalyzer.com, and 
can be used by teachers and students almost instantly. It has 
a very easy to use interface and lets the user start learning 
the robotics concepts directly rather than learning CAD 
modeling, assembly modeling and then simulate a robot, as 
done using any commercial CAD software such as ADAMS, 
RecurDyn, Autodesk Inventor, etc. 

Keywords—Robot simulation, Robotics Learning Software, 
Cartesian motion planning, Jacobian control 

I.  INTRODUCTION  

With increasing number of applications in industrial 
and research sector, robotics has grown into a thrust area 
of research and development. Robotics courses, which 
were earlier introduced in post-graduate level, are now 
being offered to the under-graduate students so as to 
facilitate early entry into research field. Robotics being a 
multi-disciplinary field, the courseware usually draws 
topics from mechanics, control, programming, electronics, 
etc. However, the core of the subject lies in the kinematics 
and dynamics, which involve mathematical 
transformations based on the Denavit-Hartenberg (DH) 
[1] parameters and the geometric and kinematic 
relationships between the robot links, joints and the end-
effector. It is imperative that the student must be 

thoroughly familiar with the mentioned concepts for 
gaining effective knowledge in advanced topics. The 
architecture or the geometric description of serial robot is 
generally based on the DH parameters and the 
mathematical transformations involved in position-motion 
description are done using the same. The related 
mathematical formulations of robot kinematics and 
dynamics draw heavily on linear algebra and vectors. It 
requires more than orthodox teaching methods and rote 
learning to make the concepts clear, since it involves 
understanding of the mathematics involved and relating it 
to the physical motion of the robot. Visualization of robot 
motion coupled with the underlying mathematics, through 
real-time demonstration will thus be an effective teaching 
tool. An overview of various robotics learning software is 
reported in [2], of which majority use skeleton models to 
represent serial robots. A skeleton model comprises of 
primitive shapes such as cylinders, cubes, etc., which are 
easy to model but do not convey the exact shape of the 
robot links. For effective and realistic visualization, CAD 
models of the robots are used in software such as 
RoKiSim [3] and v-rep [4], shown in Fig. 1(a) and (b), 
respectively. Apart from robotics education, CAD models 
of robots are also used in robot off-line programming 
software to simulate a robot program virtually and if 
found appropriate, run on actual robot. Examples of 
offline programming software are ROBOMOSP [5] and 
WorkSpace [6] shown in Fig. 1(c) and (d), respectively. In 
[2], RoboAnalyzer as robotics teaching and learning 
software was introduced with many features typically 
required in a first-level course on robotics offered to 
Mechanical and Electrical engineering students. 

 
In this paper, a new module named “Virtual Robot 

Module” (VRM) is explained, which was added to 
RoboAnalyzer software. It has 17 CAD models of 
commercially available industrial robots. The VRM can 
perform joint-level and Cartesian-level jogging. It also 
can control the robot motion in the Cartesian space by 
providing position and orientation trajectories of the end-
effector. This has been achieved by using Jacobian 
control. In Section II, the mathematical formulations 
required for the joint and Cartesian motion planning, and 
their implementation in the VRM are explained in 
Sections III and IV, respectively. Finally, the conclusions 
are given in Section V. 
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Fig. 1. Robotics learning and off-line programming software 

II. OVERVIEW 

RoboAnalyzer is a 3D model based robotics learning 
software developed since 2009 using the concepts of 
Object Oriented Programming in Visual C# programming 
language. For the visualization of a robot and its motion in 
3D environment, OpenGL, an open-source library, has 
been used through Tao Framework [7]. RoboAnalyzer has 
been developed in modules so that modification of existing 
modules and addition of new modules are easier and do 
not require major changes in the remaining modules. The 
module of Forward Kinematics (FKin) of serial robots 
with revolute joint was reported in [2], which uses skeleton 
models for the visualization of the robots. The analysis 
results were in the form of animation of the robot motion. 
The results of the analysis were also plotted as graphs 
using ZedGraph [8], an open-source plotting library in C#. 
Addition of the prismatic joints, Inverse Dynamics (IDyn) 
and Forward Dynamics (FDyn) analyses were reported in 
[9]. Modules on “Visualization of DH Parameters and 
Transformations”, “3D CAD Model Importer” and 
“Inverse Kinematics” (IKin) were reported in [10]. The 
features of all the modules are briefed in Table I. The 
interactions of these modules are shown in Fig. 2(a). 
RoboAnalyzer software, in its present form, is shown in 
Fig. 2(b). 

The position and orientation of a robot’s end-effector 
are controlled or manipulated to perform automated 
industrial tasks like welding, machining, etc. Kinematics 
involves the position and velocity description of robot 
links. The standard convention is configuration (position 
and orientation) description using the DH transformation 
matrix and the velocity description using the Jacobian 
matrix. The topics of DH parameters, forward kinematics, 
Jacobian, etc. which are used to implement the Virtual 
Robot Module proposed in this paper are available in 
robotics text books [11-13]. However, an overview of 
these topics is presented in Appendix for the sake of 
continuity and to emphasis the nomenclature followed in 
the implementation of VRM. 

 

 

TABLE I  MODULES OF ROBOANALYZER AND THEIR FEATURES 

Module Features 

DH Parameter 

Visualization 

and 

Transformations 

 It lets user select a joint and then select any DH 

parameter for which, a coordinate frame is drawn at 

the start configuration. Another coordinate frame is 

translated or rotated according to the selected DH 

parameter in the form of an animation. Visualization 

of transformation between two DH frames is done by 

drawing them on the link and by displaying the values 

of the homogeneous transformation matrix. 

Forward 

Kinematics 

(FKin) 

The module takes joints trajectory (i.e., initial and final 

values of each joint variable and type of joint-level 

trajectory) as input to determine the configuration of 

each robot link over the simulation time. The 

simulation results can be visualized by transforming 

each robot link for each time step in 3D Graphics 

Viewer. 

Inverse 

Kinematics 

(IKin) 

The module requires the pose or configuration, i.e., 

position and orientation, of the frame attached to the 

end-effector (EE) as input. It determines one or more 

solutions of the joint angles required to achieve the 

configuration required. The joint angles are passed on 

to FKin module for the visualization of the robot 

configuration. It can also perform animation from one 

solution of the IKin solution to any other. 

Inverse 

Dynamics 

(IDyn) 

It determines joint forces or torques required to 

achieve the given joint trajectories, when mass and 

inertia properties of each link and gravity acting on the 

robot are known. The motion can be viewed through 

FKin module and graphs can be plotted for the results. 

Forward 

Dynamics 

(FDyn) 

It determines the joint accelerations for gravity acting 

on the robot for a free-fall motion. The joint velocities 

and positional values are found using numerical 

integrator. The animation of the motion can be viewed 

through FKin module and the joint motion can be 

plotted. 

3D CAD Model 

Importer 

It imports the 3D CAD files (STL format) of standard 

robots such as KUKA KR5, PUMA 560 and Stanford 

Arm in the 3D Graphics Viewer and lets user perform 

different analyses. 

3D Graphics 

Viewer 

It displays skeleton model or 3D CAD model of the 

selected robot based on the DH parameters. It also 

shows the animation of the simulation results. 

Graph Plots It plots the results of different analyses. 

(a) RoKiSim [3] (b) v-rep [4] 

(c) ROBOMOSP [5] (d) WorkSpace [6] 
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Fig. 2. RoboAnalyzer Software 

III.  ROBOT MOTION PLANNING 

Industrial robots are generally used to perform various 
repetitive tasks such as pick-and-place operations, arc 
welding, spray painting, etc. In general, the instructions to 
the robot can be given in the following modes [13]: 

• Lead Through or Teach Mode: In this mode, the 
robot’s joints are moved using the robot’s teach-
pendent and a set of desired configuration, i.e., 
position and orientation, of the end-effector is 
taught to the robot controller. During playback, 
the controller moves the robot joints to the taught 
configurations repeatedly. Note that the 
incremental movement of the joints performed is 
known as ‘joint-level jogging’. In the robots, the 
movement of the end-effector in the Cartesian 
space is also possible, which is referred to as 
‘Cartesian-level jogging’. 

• Continuous Walk-through Mode: In this mode, 
the joints are moved simultaneously and the 
continuous motion is recorded by the controller. 
During the playback, the same motion is 
repeated.  

• Software or Program Mode: This is an advanced 
mode in which the desired configurations can be 
entered into a robot program or the taught points 

can be inserted into a program. Different 
commands such as ‘point-to-point’, ‘linear’, and 
‘circular’ can be used in these programs and the 
controller executes to achieve the desired robot 
motion. 
 

Note that in all the three modes, motion at joint and 
Cartesian space are desired, which will be briefly 
reviewed below. 

A. Joint Motion 

In the joint-level motion or joint-space approach, the 
desired trajectory of the end-effector (EE) is specified in 
terms of the variation of joint position, velocity and 
acceleration. Motion of the end-effector is obtained by 
performing forward kinematics as explained in Appendix, 
i.e., using (4) and (5), as illustrated in Fig. 3 for Joints 1 
and 2. The position and orientation data can be obtained 
from final homogenous transformation matrix (HTM) T. 
A smooth trajectory is obtained for all the joint variables 
based on the initial and final joint angles. Though it is 
computationally simpler, useful motion of the end-effector 
in the task space is difficult to visualize and the trajectory 
planning may be difficult in an environment with 
obstacles. Hence, a better approach to define the motion in 
task space or Cartesian space is required which is 
discussed next. 

 
Fig. 3. Motion in joint space 

B. Cartesian Motion 

The tasks to be performed by a robot are generally 
defined in the Cartesian space where as the robot is 
controlled in joint-space. For any end-effector 
configuration, the joint angles required to achieve it can 
be determined by performing inverse kinematics [12]. The 
trajectory of the end-effector to be followed in the 
Cartesian space can be divided into a number of 
infinitesimal segments and then using the position and 
orientation required at each of these via-points, obtain the 
joint angle values using the inverse kinematic equations 

Joint 
Axis 2 

Joint Axis 1 

Joint 
Axis 2 

Joint Axis 1 

) Initial Position (b) Final position after moving 
Joint 1 followed by Joint 2 

EE Trace for 
moving Joint 2 

EE Trace for 
moving Joint 1 

3D Graphics 
Viewer 

Graph Plots 

FKin 

Visualization of 
DH Parameters 

and 
Transformations 

IKin IDyn FDyn 

EE Pose Joints Trajectory Gravity 

Determine 
Joint Angles 

Determine 
Joint Forces 

Determine Joint 
Motion 

(Accelerations, 
velocities and 

positions) 

Transform 
Robot Links 

3D CAD 
Model Importer 

(a) Existing modules 

(b) Graphical User Interface (GUI) 
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for the robot. However, inverse kinematics may yield 
multiple solutions for the joint angle values. A difficulty 
that is inherent in this approach, along with the intense 
computations, is choosing the appropriate set of solutions 
for all the via-points such that the joint angles change 
smoothly with time without branching.  

Hence, another method is used here [12] to perform 
Cartesian-level motion planning with a smooth change in 
joint variables. The method uses Jacobian-based control 
and thus the computations associated to the solution of 
non-linear algebraic equations arising in the inverse 
kinematics solutions are avoided. The Jacobian-based 
control is explained here for a straight line motion 
between two specified points. The straight line is divided 
into a number of infinitesimal segments and the inverse of 
the Jacobian matrix, introduced in Appendix, i.e., J of 
(11), is used to generate a continuous set of joint values 
using (13) which correspond to all the via-points. If the 
initial joint angle configuration θ0 is known, then the 
initial position p0 and the orientation Q0 can be calculated 
from the forward kinematics equations (4) and (5) given 
in Appendix. The initial orientation in terms of the RPY 
angles, i.e., φ0, can be obtained by solving for them. From 
the final position (pf) and orientation in terms of RPY 
angles (φf) given as input, the infinitesimal changes in the 
EE position, i.e., ∆p, and the infinitesimal change in the 
orientation, i.e., ∆φ, are determined by interpolating for 
the required number of via-points. The change in the joint 
angles, ∆θk, required for the end-effector motion between 
(k-1) st and kth via-points is determined by 
 

 ∆θk = Jk
-1 �L∆φ

∆p �   (1) 

Where Jk
-1 is the inverse of the Jacobian matrix evaluated 

at the (k-1) st via point. The joint angles required to reach 
kth via point is evaluated as 
 θk = θk-1 + ∆θk   (2) 
 

Thus, a set of continuously varying joint angles 
required are obtained for all via-points, and a smooth 
motion can be seen. For a straight line motion with 
constant orientation, i.e., ∆φ=0, illustration of a          
KUKA KR5 robot is shown in Fig.4 (a) and (b). 
 

 
Fig.4. Cartesian motion of KUKA KR5 along a straight line 

IV.  V IRTUAL ROBOT MODULE 

Virtual Robot Module (VRM) is a new module 
integrated with the RoboAnalyzer software. It allows 

visualization of 17 commercially available industrial 
robots using their CAD models. The VRM displays the 
selected robot model, its specification, DH frames 
attached to the various links, homogeneous transformation 
matrix of the EE, and the trace of the EE. The pose or the 
configuration of the EE is displayed in terms of the 
Cartesian coordinates and RPY angles with respect to the 
frame attached to the base-link. It is primarily developed 
as the motion planning module of RoboAnalyzer 
software. The following types of robot motions can be 
planned and visualized using the VRM proposed in this 
paper. 

A. Joint-level Jogging 

‘Joint Control’ pane of the VRM allows joint-level 
motion study of the robot models by movement of one 
joint at a time between the specified joint limits. This 
helps to understand the effect of moving the individual 
joints and is useful for understanding the workspace 
boundaries. The user interface required for joint-level 
jogging in the VRM is illustrated in Fig.5. 
 

 
Fig. 5. User interface for 'Joint Control' in VRM 
 

B. Cartesian-level Jogging 

The ‘Jogging’ controls in the ‘Cartesian Control’ pane 
of the VRM allows changing the position and orientation 
of the EE (in terms of Cartesian coordinates and RPY 
angles, respectively) using buttons. Continuous motion of 
robot joints are achieved as the EE is jogged along the 
required direction or rotated by required angles. Jogging 
in the Cartesian-space is usually performed to teach 
configurations to the robot controller as it is intuitive and 
easy to manipulate the motion of the robot. The various 
available controls in the VRM for the Cartesian motion 
which has Cartesian-level jogging and Cartesian motion, 
described later in Section IV-C, are detailed in Fig.6, 
where X, Y, Z are the Cartesian coordinates in mm and  A, 
B, C are the roll(ψ), pitch (θ), and yaw (ϕ) angles in 
degrees, respectively.  

1 5 

EE Trace 

4 

2 

3 

1. Robot Selection and other buttons. 
2. Sliders to change joint angles within their limits. 
3. EE position and orientation. 
4. Homogeneous transformation matrix of the EE. 
5. Robot details. 

(a) Initial 
Configuration 

(b) Final 
Configuration 

EE Trace 
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Fig. 6. User interface for 'Cartesian control' in VRM 

C. Cartesian Motion 

The VRM allows the EE to move from its initial 
configuration to the specified configuration, along a 
straight line in space. The final configuration specified 
maybe relative to the current position and orientation of 
the EE or with respect to the World frame attached to the 
base-link. They are explained below. 

a) Relative: 
  It refers to specifying the final configuration of 
the EE with respect to its initial configuration. The 

increments desired in each of the position and orientation 
coordinates has to be supplied as an input. The VRM 
determines the via-points and calculates the increment in 
joint angles to be provided to the robot for the motion 
between any two consecutive via-points and updates the 
joint angles given by (2).  For straight line motion with 
constant orientation, the A, B, C values are set to zeros as 
there is no relative change in the EE orientation. 
Similarly, for a pure rotation of the EE at the initial 
position, X, Y, Z values are set to zeros. As an illustration 
of straight line motion, the initial configuration of             
KUKA KR5 robot is shown in Fig.7 (a). The EE 
coordinates for the initial configuration, the desired 
changes in the coordinates and the actual coordinates of 
the final configuration, obtained using different number of 
via-points or steps are reported in Table II. The final 
configuration obtained using 500 via-points are shown in 
Fig. 7(b). Note that the values of the position and 
orientation coordinates of the EE for the final 
configuration reached do not match the desired 
coordinates. This is because (1) and (2) are valid for 
infinitesimal small change in the position and orientation 
between consecutive via-points. Hence, using a larger 
number of steps or via-points would result in reduced 
error upon reaching the final configuration. Moreover, 
control strategy for each coordinate (X, Y, Z, ϕ, θ and ψ) 
should be implemented to reduce the error at every via-
point, which will be implemented in future.  
 

 
Fig. 7. Straight line motion of KUKA KR5 robot in Cartesian space 

TABLE II    INITIAL AND FINAL CONFIGURATION OF KUKA  KR5 ROBOT IN THE CARTESIAN SPACE 

EE Coordinates 
Initial 

Configuration 
Change in 

coordinates 

Final 
Configuration 

(Desired) 

Final Configuration (Actual) 

100 steps 200 steps 500 steps 1000 steps 

X (mm) 800 -200 600 598.535 599.261 599.696 599.892 

Y (mm) 0  200 200 201.818 200.38 200.38 200.188 

Z (mm) 1005 -200 805 803.696 804.77 804.77 804.875 

A (°) 180 -90 90 90.825 90.407 90.158 90.078 

B (°) 0  0 0 0.734 0.363 0.145 0.073 

C (°) 0   90 90 91.505 90.505 90.207 90.1 

(b) Final  
Configuration(a

EE Trace 

(a) Initial 
 Configuration 

3 

6 

4 

1 

2 

5 

7 

  

 
  

  

    

  

 

A. Controls for Cartesian-level Jogging 

1. Increments in the position coordinates (X, Y, Z 

in mm) and RPY angles (A, B, C are roll(y), 

pitch (�), and yaw (f), respectively). 

2. Buttons for position increments. 
3. Buttons for RPY angle increments. 

 
B. Controls for Cartesian Motion 

4. Set the motion as Relative or Absolute 
5. Required values for Position depending on 

Relative/Absolute motion required. 
6. Required values for RPY angles depending on 

Relative/Absolute motion required. 
7. Specify the number of steps or via-points 

between initial and final configurations. 

A 

B 
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b) Absolute: 
The final configuration of the EE is specified as the 
absolute coordinates of the position (X, Y, Z) and the 
orientation (RPY angles) in the World frame attached to 
the base-link of the robot. The increments required in the 
position and orientation coordinates are determined in the 
VRM using the difference of these coordinates in the 
initial and final configurations. Then, the procedure 
followed in “Relative” motion above is used to reach the 
final configuration.  

D. Working of VRM  

The methodology used to include CAD models of 
industrial robots in VRM is explained here. The CAD 
model of an industrial robot was imported in Autodesk 
Inventor software and the constraints were defined 
between the robot links. Using the methodology proposed 
in [14], the DH parameters of the robot were extracted and 
the DH frames were attached on each robot link using an 
Autodesk Inventor addin. CAD model of each robot link 
was then modified such that the DH frame attached to the 
link coincides with the part origin frame of the link. This 
is done to simplify the process of visualization and 
animation. The modified CAD model was then exported 
as STL (stereolithography) file. An XML (extensible 
Markup Language) file was created with the DH 
parameters, robot information and other details. The VRM 
module reads the XML file of the robot and generates the 
3D CAD model in OpenGL using the STL files of the 
robot links. Users can add CAD models of any robot to 
VRM if CAD assemblies are available following the 
above approach.  

V. CONCLUSIONS 

The “Virtual Robot Module” (VRM) for RoboAnalyzer 
is presented in the paper and its significance in classroom 
teaching is explained. A computationally simpler 
approach for Cartesian motion planning is implemented to 
achieve jogging and straight line motion in the Cartesian 
space. Trajectory planning with a good degree of accuracy 
is achieved. Further functionalities like teaching points 
using joystick and having Cartesian motion between them, 
interface to write robot programs such as VAL-II, circular 
trajectory planning, etc., will be implemented in the future 
versions of VRM module of RoboAnalyzer software. The 
latest version of the VRM module can be downloaded as 
Version 6.1 of the software from 
http://www.roboanalyzer.com. The readers are 
encouraged to use the same and give feedback to the 
authors for further improvement of the software. 

APPENDIX 

A. Denavit-Hartenberg(DH) Parameters 

The robot architecture is described in terms of the 
Denavit-Hartenberg [1] parameters. A robot usually 
consists of a number of links connected by joints generally 
having one degree-of-freedom (DOF). The configuration 
of the end-effector (i.e., the coordinate frame attached to 
the end-effector) with respect to the World coordinate 

frame (the frame attached to the base-link) is obtained 
through a series of transformations.  

These are based on the relative location of the 
coordinate frames (DH frames) attached to the links of the 
robot. The conventions used for attaching the DH frames 
are outlined in [11] and the description of a DH frame with 
respect to a previous DH frame is done using the four DH 
parameters, as illustrated in Fig. 3(a) and (b), and 
explained in Table III. 

 
Fig. 8. Denavit Hartenberg (DH) parameters 

 

TABLE IIII     DESCRIPTION OF DH PARAMETERS 

Parameters Description 

Joint Offset (bi) Distance between Xi and Xi+1 along Zi 

Joint Angle (θi) Angle between Xi and X i+1 about Zi 

Link Length (ai) Distance between Zi and Z i+1 along X i+1 

Twist Angle (αi) Angle between Zi and Z i+1 about X i+1 

 

B. Forward Kinematics 

Forward kinematics involves determining the position 
and orientation of the robot end-effector for a given values 
of joint variables. End-effector (EE) configuration can be 
obtained through the closure equations as described 
below: 

• For a robot with n+1 links, connected through n 
joints, coordinate frames are attached to each link 

Link 0 

Link 1 

Link 2 

Link 3 

Frame 1 

Frame 2 

Frame 3 
Frame 4 

(a) Coordinate frames attached to links 

�� 
�� 

�� 

���� 

�� 

�� 

���� 

���� 
	��� 
���	 

�� 	� 


�	 

�� 

(b) Two successive coordinate frames 
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as per the conventions followed in [11]. Frame 1 
is attached to the base-link and Frame n+1 is 
attached to the nth link, i.e., the end-effector. 

• The DH parameters are assigned as described in 
Appendix A. 

• The homogeneous transformation matrices T1, 
T2,.. Ti,.. Tn are computed, where Ti stands for 
the transformation of Frame i+1 (attached to 
Link i) with respect to Frame i (attached to Link 
i-1), using the DH parameters assigned 
previously. Ti  is given by: 
 

 
cos cos sin sin sin cos

sin cos cos sin cos sin

0 sin cos

0 0 0 1

i i i i i ii

i i i i i ii

i i i

a

a

b

θ α θ α θ θ
θ α θ α θ θ

α α

− 
 − =
 
 
 

iT
 (3) 

• The homogeneous transformation matrix of the 
end-effector frame with respect to the base-link 
is then obtained by post multiplication of the 
individual transformations in the order as  
 

 T = T1T2T3...Tn (4) 
 

This is the closure equation of the robot. Substituting (3) 
in (4) for the required number of links, the final 
homogeneous transformation matrix is obtained as   
 

 T = 
Q p
0 1

� (5) 

 
Where Q is the 3×3 orientation matrix of the EE, and p is 
the 3-dimensional vector that specifies the position of the 
EE (i.e., Frame n+1), both with respect to the base-link 
(Frame 1). 

C. Orientation Description using RPY Angles 

Roll-Pitch-Yaw (RPY) angles are a set of Euler angles 
used for orientation representation. If these angles are 
denoted with	�,�	and	�, the array of RPY angles is 
denoted by the 3-dimensional vector ϕϕϕϕ as        
 
 ϕϕϕϕ = = = = [ ϕ    θ ψ ]Τ    (6) 
 
The RPY angles are defined as the rotation of a frame 
with respect to the reference frame by an angle φ first 
about Z axis (yaw), followed by a rotation by an angle θ 
about Y axis (pitch), and finally a rotation by an angle ψ  
about X axis (roll). All rotations are made with respect to 
the frame attached to the base-link. For motion control of 
industrial robots, roll, pitch and yaw are denoted by angles 
A (= �), B (= �) and C (= �), respectively. The 
orientation matrix representing the resultant frame with 
respect to the fixed frame is then given by 
 

 QRPY = �CφCθ CφSθSψ-SθCψ CφSθCψ+SθSψ

SφCθ SφSθSψ+CφCψ SφSθCψ-CθSψ

-Sθ CθSψ CθCψ

�  (7) 

Where Cφ = cosφ, Sφ = sinφ and similarly for the other 
angles θ and ψ.  

D. Jacobian 

The manipulator Jacobian matrix relates the angular 
and linear velocities of the end-effector to the joint 
velocities [11, 12]. The Jacobian matrix depends on the 
current manipulator configuration given by the joint 
variables θ, i.e., θ = [θ1 θ2 ...  θn]

T. The position vector p 
and the direction cosine matrix (DCM) Q are functions of 
the joint variables. The angular velocity of the end-
effector ωe can be correlated to the time rate of change in 
RPY angles and the end-effector’s linear velocity ve as the 
time rate of change of the Cartesian coordinates with 
respect to the base frame. The vectors ωe and ve can be 
expressed in terms of rate of change of the joint variables, 
i.e., ��   as  
 ωωωωe = Jω ��  (8) 
 
 ve = Jv ��  (9) 
Where J

ω
 and Jv are the 3×n matrices relating the 

contribution of joint velocities ��  to the angular velocity ωe 
and linear velocity ve, respectively. These matrices are 
functions of joint variables θ. Equations (8) and (9) can be 
expressed in a compact form 
 
 te = J��  (10) 
 
Where,  te= [ωe

T ve
T]T is 6-dimensional vector defined as 

the twist of the end-effector, whereas,  J = [J
ω

T  Jv
T ]T is 

the 6×n matrix called the manipulator ‘Jacobian’. With 
reference to Fig.9, for a manipulator or serial robot having 
all joints of revolute type, the manipulator Jacobian can be 
expressed as  
 

 J =
 e1

e1×a1e

e2

e2×a2e

…   
…   

en

en×ane
� (11) 

 
Where ei is the unit vector parallel to the axis of the ith 
joint and aie is the vector drawn from the origin of Frame i 
to the origin of Frame n+1 attached to the end-effector.  
Vector aie, for i = 1, 2,...n, can be computed as	∑ ���

��� . 
Note that the concept of manipulator Jacobian given by 
(11) is useful to find infinitesimally small change in 
position and orientation. For that, the constant relationship 
between the angular velocity of the end-effector, i.e., ωe, 

and the rate of change of RPY angles  �� = 	 ��� 			�� 			�� �� is 
given by [12] as 
 ωωωωe = L��  (12) 
 

 Where L 	= �cosψ cosθ - sinψ 0
sinψ cosθ cosψ 0

- sinθ 0 1

� 
From (8), (9) and (12), the changes in the RPY angles, 
i.e., ∆φ, and the position of the end-effector, i.e., ∆p can 
be related to the change in joint angles, i.e., ∆θ as 
 

 �L∆φ
∆p � 	=	J∆θ	=	 �JωJv

�∆θ  (13) 
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The expression in (13) is used in Section III-B for 
Cartesian Motion Planning of serial robots. 
 

 
Fig. 9. Coupled links of a robot 
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