

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013

Virtual Robot Simulation in RoboAnalyzer

Ratan Sadanand O. M.
Department of Mechanical Engineering
National Institute of Technology Calicut

Kozhikode, 673601, India
ratan.sadan@gmail.com

Rajeevlochana G. Chittawadigi, Subir K. Saha
Department of Mechanical Engineering

Indian Institute of Technology Delhi
New Delhi, 110016, India

rajeevlochan.iitd@gmail.com, saha@mech.iitd.ac.in

Abstract— Robotics is an important area not only in
research and development but also from the perspective of
industrial automation. As a result, increasing number of
fundamental and advanced level robotics courses are being
introduced in the undergraduate and postgraduate
curricula, particularly in Mechanical and Electrical
engineering streams. Robot kinematics is the cornerstone of
such courses and it is equally challenging for teachers to
teach as well as students to learn, as the concepts such as
Denavit-Hartenberg (DH) parameters, robot kinematic and
dynamic analyses, trajectory planning, etc. are difficult to
understand. Various robotics learning software and tools
have been developed by researchers around the world. One
such attempt is made here to develop software called
RoboAnalyzer. It can show animated DH parameters and
performs forward and inverse kinematics, and dynamic
analyses on serial robots. In this paper, a new module named
“Virtual Robot Module” is reported which consists of 17
CAD models of commercially available industrial robots.
Joint-level and Cartesian-level jogging can be performed on
these robots. Relative and absolute motion of the end-
effector can be achieved in the Cartesian space by
controlling the position as well as the orientation of the end-
effector. RoboAnalyzer software is freely available for
academic purposes from http://www.roboanalyzer.com, and
can be used by teachers and students almost instantly. It has
a very easy to use interface and lets the user start learning
the robotics concepts directly rather than learning CAD
modeling, assembly modeling and then simulate a robot, as
done using any commercial CAD software such as ADAMS,
RecurDyn, Autodesk Inventor, etc.

Keywords—Robot simulation, Robotics Learning Software,
Cartesian motion planning, Jacobian control

I. INTRODUCTION

With increasing number of applications in industrial
and research sector, robotics has grown into a thrust area
of research and development. Robotics courses, which
were earlier introduced in post-graduate level, are now
being offered to the under-graduate students so as to
facilitate early entry into research field. Robotics being a
multi-disciplinary field, the courseware usually draws
topics from mechanics, control, programming, electronics,
etc. However, the core of the subject lies in the kinematics
and dynamics, which involve mathematical
transformations based on the Denavit-Hartenberg (DH)
[1] parameters and the geometric and kinematic
relationships between the robot links, joints and the end-
effector. It is imperative that the student must be

thoroughly familiar with the mentioned concepts for
gaining effective knowledge in advanced topics. The
architecture or the geometric description of serial robot is
generally based on the DH parameters and the
mathematical transformations involved in position-motion
description are done using the same. The related
mathematical formulations of robot kinematics and
dynamics draw heavily on linear algebra and vectors. It
requires more than orthodox teaching methods and rote
learning to make the concepts clear, since it involves
understanding of the mathematics involved and relating it
to the physical motion of the robot. Visualization of robot
motion coupled with the underlying mathematics, through
real-time demonstration will thus be an effective teaching
tool. An overview of various robotics learning software is
reported in [2], of which majority use skeleton models to
represent serial robots. A skeleton model comprises of
primitive shapes such as cylinders, cubes, etc., which are
easy to model but do not convey the exact shape of the
robot links. For effective and realistic visualization, CAD
models of the robots are used in software such as
RoKiSim [3] and v-rep [4], shown in Fig. 1(a) and (b),
respectively. Apart from robotics education, CAD models
of robots are also used in robot off-line programming
software to simulate a robot program virtually and if
found appropriate, run on actual robot. Examples of
offline programming software are ROBOMOSP [5] and
WorkSpace [6] shown in Fig. 1(c) and (d), respectively. In
[2], RoboAnalyzer as robotics teaching and learning
software was introduced with many features typically
required in a first-level course on robotics offered to
Mechanical and Electrical engineering students.

In this paper, a new module named “Virtual Robot

Module” (VRM) is explained, which was added to
RoboAnalyzer software. It has 17 CAD models of
commercially available industrial robots. The VRM can
perform joint-level and Cartesian-level jogging. It also
can control the robot motion in the Cartesian space by
providing position and orientation trajectories of the end-
effector. This has been achieved by using Jacobian
control. In Section II, the mathematical formulations
required for the joint and Cartesian motion planning, and
their implementation in the VRM are explained in
Sections III and IV, respectively. Finally, the conclusions
are given in Section V.

686

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013

Fig. 1. Robotics learning and off-line programming software

II. OVERVIEW

RoboAnalyzer is a 3D model based robotics learning
software developed since 2009 using the concepts of
Object Oriented Programming in Visual C# programming
language. For the visualization of a robot and its motion in
3D environment, OpenGL, an open-source library, has
been used through Tao Framework [7]. RoboAnalyzer has
been developed in modules so that modification of existing
modules and addition of new modules are easier and do
not require major changes in the remaining modules. The
module of Forward Kinematics (FKin) of serial robots
with revolute joint was reported in [2], which uses skeleton
models for the visualization of the robots. The analysis
results were in the form of animation of the robot motion.
The results of the analysis were also plotted as graphs
using ZedGraph [8], an open-source plotting library in C#.
Addition of the prismatic joints, Inverse Dynamics (IDyn)
and Forward Dynamics (FDyn) analyses were reported in
[9]. Modules on “Visualization of DH Parameters and
Transformations”, “3D CAD Model Importer” and
“Inverse Kinematics” (IKin) were reported in [10]. The
features of all the modules are briefed in Table I. The
interactions of these modules are shown in Fig. 2(a).
RoboAnalyzer software, in its present form, is shown in
Fig. 2(b).

The position and orientation of a robot’s end-effector
are controlled or manipulated to perform automated
industrial tasks like welding, machining, etc. Kinematics
involves the position and velocity description of robot
links. The standard convention is configuration (position
and orientation) description using the DH transformation
matrix and the velocity description using the Jacobian
matrix. The topics of DH parameters, forward kinematics,
Jacobian, etc. which are used to implement the Virtual
Robot Module proposed in this paper are available in
robotics text books [11-13]. However, an overview of
these topics is presented in Appendix for the sake of
continuity and to emphasis the nomenclature followed in
the implementation of VRM.

TABLE I MODULES OF ROBOANALYZER AND THEIR FEATURES

Module Features

DH Parameter

Visualization

and

Transformations

 It lets user select a joint and then select any DH

parameter for which, a coordinate frame is drawn at

the start configuration. Another coordinate frame is

translated or rotated according to the selected DH

parameter in the form of an animation. Visualization

of transformation between two DH frames is done by

drawing them on the link and by displaying the values

of the homogeneous transformation matrix.

Forward

Kinematics

(FKin)

The module takes joints trajectory (i.e., initial and final

values of each joint variable and type of joint-level

trajectory) as input to determine the configuration of

each robot link over the simulation time. The

simulation results can be visualized by transforming

each robot link for each time step in 3D Graphics

Viewer.

Inverse

Kinematics

(IKin)

The module requires the pose or configuration, i.e.,

position and orientation, of the frame attached to the

end-effector (EE) as input. It determines one or more

solutions of the joint angles required to achieve the

configuration required. The joint angles are passed on

to FKin module for the visualization of the robot

configuration. It can also perform animation from one

solution of the IKin solution to any other.

Inverse

Dynamics

(IDyn)

It determines joint forces or torques required to

achieve the given joint trajectories, when mass and

inertia properties of each link and gravity acting on the

robot are known. The motion can be viewed through

FKin module and graphs can be plotted for the results.

Forward

Dynamics

(FDyn)

It determines the joint accelerations for gravity acting

on the robot for a free-fall motion. The joint velocities

and positional values are found using numerical

integrator. The animation of the motion can be viewed

through FKin module and the joint motion can be

plotted.

3D CAD Model

Importer

It imports the 3D CAD files (STL format) of standard

robots such as KUKA KR5, PUMA 560 and Stanford

Arm in the 3D Graphics Viewer and lets user perform

different analyses.

3D Graphics

Viewer

It displays skeleton model or 3D CAD model of the

selected robot based on the DH parameters. It also

shows the animation of the simulation results.

Graph Plots It plots the results of different analyses.

(a) RoKiSim [3] (b) v-rep [4]

(c) ROBOMOSP [5] (d) WorkSpace [6]

687

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013

Fig. 2. RoboAnalyzer Software

III. ROBOT MOTION PLANNING

Industrial robots are generally used to perform various
repetitive tasks such as pick-and-place operations, arc
welding, spray painting, etc. In general, the instructions to
the robot can be given in the following modes [13]:

• Lead Through or Teach Mode: In this mode, the
robot’s joints are moved using the robot’s teach-
pendent and a set of desired configuration, i.e.,
position and orientation, of the end-effector is
taught to the robot controller. During playback,
the controller moves the robot joints to the taught
configurations repeatedly. Note that the
incremental movement of the joints performed is
known as ‘joint-level jogging’. In the robots, the
movement of the end-effector in the Cartesian
space is also possible, which is referred to as
‘Cartesian-level jogging’.

• Continuous Walk-through Mode: In this mode,
the joints are moved simultaneously and the
continuous motion is recorded by the controller.
During the playback, the same motion is
repeated.

• Software or Program Mode: This is an advanced
mode in which the desired configurations can be
entered into a robot program or the taught points

can be inserted into a program. Different
commands such as ‘point-to-point’, ‘linear’, and
‘circular’ can be used in these programs and the
controller executes to achieve the desired robot
motion.

Note that in all the three modes, motion at joint and
Cartesian space are desired, which will be briefly
reviewed below.

A. Joint Motion

In the joint-level motion or joint-space approach, the
desired trajectory of the end-effector (EE) is specified in
terms of the variation of joint position, velocity and
acceleration. Motion of the end-effector is obtained by
performing forward kinematics as explained in Appendix,
i.e., using (4) and (5), as illustrated in Fig. 3 for Joints 1
and 2. The position and orientation data can be obtained
from final homogenous transformation matrix (HTM) T.
A smooth trajectory is obtained for all the joint variables
based on the initial and final joint angles. Though it is
computationally simpler, useful motion of the end-effector
in the task space is difficult to visualize and the trajectory
planning may be difficult in an environment with
obstacles. Hence, a better approach to define the motion in
task space or Cartesian space is required which is
discussed next.

Fig. 3. Motion in joint space

B. Cartesian Motion

The tasks to be performed by a robot are generally
defined in the Cartesian space where as the robot is
controlled in joint-space. For any end-effector
configuration, the joint angles required to achieve it can
be determined by performing inverse kinematics [12]. The
trajectory of the end-effector to be followed in the
Cartesian space can be divided into a number of
infinitesimal segments and then using the position and
orientation required at each of these via-points, obtain the
joint angle values using the inverse kinematic equations

Joint
Axis 2

Joint Axis 1

Joint
Axis 2

Joint Axis 1

) Initial Position (b) Final position after moving
Joint 1 followed by Joint 2

EE Trace for
moving Joint 2

EE Trace for
moving Joint 1

3D Graphics
Viewer

Graph Plots

FKin

Visualization of
DH Parameters

and
Transformations

IKin IDyn FDyn

EE Pose Joints Trajectory Gravity

Determine
Joint Angles

Determine
Joint Forces

Determine Joint
Motion

(Accelerations,
velocities and

positions)

Transform
Robot Links

3D CAD
Model Importer

(a) Existing modules

(b) Graphical User Interface (GUI)

688

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013

for the robot. However, inverse kinematics may yield
multiple solutions for the joint angle values. A difficulty
that is inherent in this approach, along with the intense
computations, is choosing the appropriate set of solutions
for all the via-points such that the joint angles change
smoothly with time without branching.

Hence, another method is used here [12] to perform
Cartesian-level motion planning with a smooth change in
joint variables. The method uses Jacobian-based control
and thus the computations associated to the solution of
non-linear algebraic equations arising in the inverse
kinematics solutions are avoided. The Jacobian-based
control is explained here for a straight line motion
between two specified points. The straight line is divided
into a number of infinitesimal segments and the inverse of
the Jacobian matrix, introduced in Appendix, i.e., J of
(11), is used to generate a continuous set of joint values
using (13) which correspond to all the via-points. If the
initial joint angle configuration θ0 is known, then the
initial position p0 and the orientation Q0 can be calculated
from the forward kinematics equations (4) and (5) given
in Appendix. The initial orientation in terms of the RPY
angles, i.e., φ0, can be obtained by solving for them. From
the final position (pf) and orientation in terms of RPY
angles (φf) given as input, the infinitesimal changes in the
EE position, i.e., ∆p, and the infinitesimal change in the
orientation, i.e., ∆φ, are determined by interpolating for
the required number of via-points. The change in the joint
angles, ∆θk, required for the end-effector motion between
(k-1) st and kth via-points is determined by

 ∆θk = Jk
-1 �L∆φ

∆p � (1)

Where Jk
-1 is the inverse of the Jacobian matrix evaluated

at the (k-1) st via point. The joint angles required to reach
kth via point is evaluated as
 θk = θk-1 + ∆θk (2)

Thus, a set of continuously varying joint angles
required are obtained for all via-points, and a smooth
motion can be seen. For a straight line motion with
constant orientation, i.e., ∆φ=0, illustration of a
KUKA KR5 robot is shown in Fig.4 (a) and (b).

Fig.4. Cartesian motion of KUKA KR5 along a straight line

IV. V IRTUAL ROBOT MODULE

Virtual Robot Module (VRM) is a new module
integrated with the RoboAnalyzer software. It allows

visualization of 17 commercially available industrial
robots using their CAD models. The VRM displays the
selected robot model, its specification, DH frames
attached to the various links, homogeneous transformation
matrix of the EE, and the trace of the EE. The pose or the
configuration of the EE is displayed in terms of the
Cartesian coordinates and RPY angles with respect to the
frame attached to the base-link. It is primarily developed
as the motion planning module of RoboAnalyzer
software. The following types of robot motions can be
planned and visualized using the VRM proposed in this
paper.

A. Joint-level Jogging

‘Joint Control’ pane of the VRM allows joint-level
motion study of the robot models by movement of one
joint at a time between the specified joint limits. This
helps to understand the effect of moving the individual
joints and is useful for understanding the workspace
boundaries. The user interface required for joint-level
jogging in the VRM is illustrated in Fig.5.

Fig. 5. User interface for 'Joint Control' in VRM

B. Cartesian-level Jogging

The ‘Jogging’ controls in the ‘Cartesian Control’ pane
of the VRM allows changing the position and orientation
of the EE (in terms of Cartesian coordinates and RPY
angles, respectively) using buttons. Continuous motion of
robot joints are achieved as the EE is jogged along the
required direction or rotated by required angles. Jogging
in the Cartesian-space is usually performed to teach
configurations to the robot controller as it is intuitive and
easy to manipulate the motion of the robot. The various
available controls in the VRM for the Cartesian motion
which has Cartesian-level jogging and Cartesian motion,
described later in Section IV-C, are detailed in Fig.6,
where X, Y, Z are the Cartesian coordinates in mm and A,
B, C are the roll(ψ), pitch (θ), and yaw (ϕ) angles in
degrees, respectively.

1 5

EE Trace

4

2

3

1. Robot Selection and other buttons.
2. Sliders to change joint angles within their limits.
3. EE position and orientation.
4. Homogeneous transformation matrix of the EE.
5. Robot details.

(a) Initial
Configuration

(b) Final
Configuration

EE Trace

689

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013

Fig. 6. User interface for 'Cartesian control' in VRM

C. Cartesian Motion

The VRM allows the EE to move from its initial
configuration to the specified configuration, along a
straight line in space. The final configuration specified
maybe relative to the current position and orientation of
the EE or with respect to the World frame attached to the
base-link. They are explained below.

a) Relative:
 It refers to specifying the final configuration of
the EE with respect to its initial configuration. The

increments desired in each of the position and orientation
coordinates has to be supplied as an input. The VRM
determines the via-points and calculates the increment in
joint angles to be provided to the robot for the motion
between any two consecutive via-points and updates the
joint angles given by (2). For straight line motion with
constant orientation, the A, B, C values are set to zeros as
there is no relative change in the EE orientation.
Similarly, for a pure rotation of the EE at the initial
position, X, Y, Z values are set to zeros. As an illustration
of straight line motion, the initial configuration of
KUKA KR5 robot is shown in Fig.7 (a). The EE
coordinates for the initial configuration, the desired
changes in the coordinates and the actual coordinates of
the final configuration, obtained using different number of
via-points or steps are reported in Table II. The final
configuration obtained using 500 via-points are shown in
Fig. 7(b). Note that the values of the position and
orientation coordinates of the EE for the final
configuration reached do not match the desired
coordinates. This is because (1) and (2) are valid for
infinitesimal small change in the position and orientation
between consecutive via-points. Hence, using a larger
number of steps or via-points would result in reduced
error upon reaching the final configuration. Moreover,
control strategy for each coordinate (X, Y, Z, ϕ, θ and ψ)
should be implemented to reduce the error at every via-
point, which will be implemented in future.

Fig. 7. Straight line motion of KUKA KR5 robot in Cartesian space

TABLE II INITIAL AND FINAL CONFIGURATION OF KUKA KR5 ROBOT IN THE CARTESIAN SPACE

EE Coordinates
Initial

Configuration
Change in

coordinates

Final
Configuration

(Desired)

Final Configuration (Actual)

100 steps 200 steps 500 steps 1000 steps

X (mm) 800 -200 600 598.535 599.261 599.696 599.892

Y (mm) 0 200 200 201.818 200.38 200.38 200.188

Z (mm) 1005 -200 805 803.696 804.77 804.77 804.875

A (°) 180 -90 90 90.825 90.407 90.158 90.078

B (°) 0 0 0 0.734 0.363 0.145 0.073

C (°) 0 90 90 91.505 90.505 90.207 90.1

(b) Final
Configuration(a

EE Trace

(a) Initial
 Configuration

3

6

4

1

2

5

7

A. Controls for Cartesian-level Jogging

1. Increments in the position coordinates (X, Y, Z

in mm) and RPY angles (A, B, C are roll(y),

pitch (�), and yaw (f), respectively).

2. Buttons for position increments.
3. Buttons for RPY angle increments.

B. Controls for Cartesian Motion

4. Set the motion as Relative or Absolute
5. Required values for Position depending on

Relative/Absolute motion required.
6. Required values for RPY angles depending on

Relative/Absolute motion required.
7. Specify the number of steps or via-points

between initial and final configurations.

A

B

690

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013

b) Absolute:
The final configuration of the EE is specified as the
absolute coordinates of the position (X, Y, Z) and the
orientation (RPY angles) in the World frame attached to
the base-link of the robot. The increments required in the
position and orientation coordinates are determined in the
VRM using the difference of these coordinates in the
initial and final configurations. Then, the procedure
followed in “Relative” motion above is used to reach the
final configuration.

D. Working of VRM

The methodology used to include CAD models of
industrial robots in VRM is explained here. The CAD
model of an industrial robot was imported in Autodesk
Inventor software and the constraints were defined
between the robot links. Using the methodology proposed
in [14], the DH parameters of the robot were extracted and
the DH frames were attached on each robot link using an
Autodesk Inventor addin. CAD model of each robot link
was then modified such that the DH frame attached to the
link coincides with the part origin frame of the link. This
is done to simplify the process of visualization and
animation. The modified CAD model was then exported
as STL (stereolithography) file. An XML (extensible
Markup Language) file was created with the DH
parameters, robot information and other details. The VRM
module reads the XML file of the robot and generates the
3D CAD model in OpenGL using the STL files of the
robot links. Users can add CAD models of any robot to
VRM if CAD assemblies are available following the
above approach.

V. CONCLUSIONS

The “Virtual Robot Module” (VRM) for RoboAnalyzer
is presented in the paper and its significance in classroom
teaching is explained. A computationally simpler
approach for Cartesian motion planning is implemented to
achieve jogging and straight line motion in the Cartesian
space. Trajectory planning with a good degree of accuracy
is achieved. Further functionalities like teaching points
using joystick and having Cartesian motion between them,
interface to write robot programs such as VAL-II, circular
trajectory planning, etc., will be implemented in the future
versions of VRM module of RoboAnalyzer software. The
latest version of the VRM module can be downloaded as
Version 6.1 of the software from
http://www.roboanalyzer.com. The readers are
encouraged to use the same and give feedback to the
authors for further improvement of the software.

APPENDIX

A. Denavit-Hartenberg(DH) Parameters

The robot architecture is described in terms of the
Denavit-Hartenberg [1] parameters. A robot usually
consists of a number of links connected by joints generally
having one degree-of-freedom (DOF). The configuration
of the end-effector (i.e., the coordinate frame attached to
the end-effector) with respect to the World coordinate

frame (the frame attached to the base-link) is obtained
through a series of transformations.

These are based on the relative location of the
coordinate frames (DH frames) attached to the links of the
robot. The conventions used for attaching the DH frames
are outlined in [11] and the description of a DH frame with
respect to a previous DH frame is done using the four DH
parameters, as illustrated in Fig. 3(a) and (b), and
explained in Table III.

Fig. 8. Denavit Hartenberg (DH) parameters

TABLE IIII DESCRIPTION OF DH PARAMETERS

Parameters Description

Joint Offset (bi) Distance between Xi and Xi+1 along Zi

Joint Angle (θi) Angle between Xi and X i+1 about Zi

Link Length (ai) Distance between Zi and Z i+1 along X i+1

Twist Angle (αi) Angle between Zi and Z i+1 about X i+1

B. Forward Kinematics

Forward kinematics involves determining the position
and orientation of the robot end-effector for a given values
of joint variables. End-effector (EE) configuration can be
obtained through the closure equations as described
below:

• For a robot with n+1 links, connected through n
joints, coordinate frames are attached to each link

Link 0

Link 1

Link 2

Link 3

Frame 1

Frame 2

Frame 3
Frame 4

(a) Coordinate frames attached to links

��
��

��

����

��

��

����

����
	���
���	

�� 	�

�	

��

(b) Two successive coordinate frames

691

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013

as per the conventions followed in [11]. Frame 1
is attached to the base-link and Frame n+1 is
attached to the nth link, i.e., the end-effector.

• The DH parameters are assigned as described in
Appendix A.

• The homogeneous transformation matrices T1,
T2,.. Ti,.. Tn are computed, where Ti stands for
the transformation of Frame i+1 (attached to
Link i) with respect to Frame i (attached to Link
i-1), using the DH parameters assigned
previously. Ti is given by:

cos cos sin sin sin cos

sin cos cos sin cos sin

0 sin cos

0 0 0 1

i i i i i ii

i i i i i ii

i i i

a

a

b

θ α θ α θ θ
θ α θ α θ θ

α α

− 
 − =
 
 
 

iT
 (3)

• The homogeneous transformation matrix of the
end-effector frame with respect to the base-link
is then obtained by post multiplication of the
individual transformations in the order as

 T = T1T2T3...Tn (4)

This is the closure equation of the robot. Substituting (3)
in (4) for the required number of links, the final
homogeneous transformation matrix is obtained as

 T =
Q p
0 1

� (5)

Where Q is the 3×3 orientation matrix of the EE, and p is
the 3-dimensional vector that specifies the position of the
EE (i.e., Frame n+1), both with respect to the base-link
(Frame 1).

C. Orientation Description using RPY Angles

Roll-Pitch-Yaw (RPY) angles are a set of Euler angles
used for orientation representation. If these angles are
denoted with	�,�	and	�, the array of RPY angles is
denoted by the 3-dimensional vector ϕϕϕϕ as

 ϕϕϕϕ = = = = [ϕ θ ψ]Τ (6)

The RPY angles are defined as the rotation of a frame
with respect to the reference frame by an angle φ first
about Z axis (yaw), followed by a rotation by an angle θ
about Y axis (pitch), and finally a rotation by an angle ψ
about X axis (roll). All rotations are made with respect to
the frame attached to the base-link. For motion control of
industrial robots, roll, pitch and yaw are denoted by angles
A (= �), B (= �) and C (= �), respectively. The
orientation matrix representing the resultant frame with
respect to the fixed frame is then given by

 QRPY = �CφCθ CφSθSψ-SθCψ CφSθCψ+SθSψ

SφCθ SφSθSψ+CφCψ SφSθCψ-CθSψ

-Sθ CθSψ CθCψ

� (7)

Where Cφ = cosφ, Sφ = sinφ and similarly for the other
angles θ and ψ.

D. Jacobian

The manipulator Jacobian matrix relates the angular
and linear velocities of the end-effector to the joint
velocities [11, 12]. The Jacobian matrix depends on the
current manipulator configuration given by the joint
variables θ, i.e., θ = [θ1 θ2 ... θn]

T. The position vector p
and the direction cosine matrix (DCM) Q are functions of
the joint variables. The angular velocity of the end-
effector ωe can be correlated to the time rate of change in
RPY angles and the end-effector’s linear velocity ve as the
time rate of change of the Cartesian coordinates with
respect to the base frame. The vectors ωe and ve can be
expressed in terms of rate of change of the joint variables,
i.e., �� as
 ωωωωe = Jω �� (8)

 ve = Jv �� (9)
Where J

ω
 and Jv are the 3×n matrices relating the

contribution of joint velocities �� to the angular velocity ωe
and linear velocity ve, respectively. These matrices are
functions of joint variables θ. Equations (8) and (9) can be
expressed in a compact form

 te = J�� (10)

Where, te= [ωe

T ve
T]T is 6-dimensional vector defined as

the twist of the end-effector, whereas, J = [J
ω

T Jv
T]T is

the 6×n matrix called the manipulator ‘Jacobian’. With
reference to Fig.9, for a manipulator or serial robot having
all joints of revolute type, the manipulator Jacobian can be
expressed as

 J =
 e1

e1×a1e

e2

e2×a2e

…
…

en

en×ane
� (11)

Where ei is the unit vector parallel to the axis of the ith
joint and aie is the vector drawn from the origin of Frame i
to the origin of Frame n+1 attached to the end-effector.
Vector aie, for i = 1, 2,...n, can be computed as	∑ ���

��� .
Note that the concept of manipulator Jacobian given by
(11) is useful to find infinitesimally small change in
position and orientation. For that, the constant relationship
between the angular velocity of the end-effector, i.e., ωe,

and the rate of change of RPY angles �� = 	 ��� 			�� 			�� �� is
given by [12] as
 ωωωωe = L�� (12)

 Where L 	= �cosψ cosθ - sinψ 0
sinψ cosθ cosψ 0

- sinθ 0 1

�
From (8), (9) and (12), the changes in the RPY angles,
i.e., ∆φ, and the position of the end-effector, i.e., ∆p can
be related to the change in joint angles, i.e., ∆θ as

 �L∆φ
∆p � 	=	J∆θ	=	 �JωJv

�∆θ (13)

692

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013

The expression in (13) is used in Section III-B for
Cartesian Motion Planning of serial robots.

Fig. 9. Coupled links of a robot

REFERENCES
[1] J. Denavit and R. S. Hartenberg, “A Kinematic Notation for Lower

pair mechanisms based on Matrices,” ASME Journal of Applied
Mechanisms, Vol. 22, No. 2, pp. 215 - 221, 1955.

[2] C. G. Rajeevlochana and S. K. Saha, “"RoboAnalyzer: 3D model
based robotics learning software,” International Conference on
Multibody Dynamics, pp. 3 – 13, 2011.

[3] RoKiSim - http://www.parallemic.org/RoKiSim.html.

[4] v-rep - http://www.coppeliarobotics.com

[5] A. Jaramillo-Botero, A. Matta-Gomez, J. F. Correa-Caicedo, and
W. Perea-Castro, “ROBOMOSP,” IEEE Robotics & Automation
Magazine, Vol.13, No.4, pp.62-73, 2006.

[6] WorkSpace - http://www.workspacelt.com.

[7] Tao Framework - http://sourceforge.net/projects/taoframework.

[8] ZedGraph Library - http://zedgraph.sourceforge.net/index.html.

[9] C. G. Rajeevlochana, A. Jain, S. V. Shah, and S. K. Saha,
“Recursive Robot Dynamics in RoboAnalyzer,” 15th National
Conference on Machines and Mechanisms, pp. 482-490, 2011.

[10] J. Bahuguna, R. G. Chittawadigi and S. K. Saha, “Teaching and
Learning of Robot Kinematics Using RoboAnalyzer Software,”
International Conference on Advances in Robotics, 2013.

[11] S. K. Saha, Introduction To Robotics, Tata McGraw-Hill, 2008.

[12] R. Manseur , Robot Modelling and Kinematics, Thomson-Delmar
Learning, 2006.

[13] S. B. Niku, Introduction to Robotics: Analysis, Systems, Prentice
Hall, 2010.

[14] C. G. Rajeevlochana, S. K. Saha, and S. Kumar, “Automatic
Extraction of DH Parameters of Serial Manipulators using Line
Geometry,” The 2nd Joint International Conference on Multibody
System Dynamics, 2012.

693

