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Abstract— This paper presents a second order sliding
mode control (SOSMC) for a single link flexible manipulator,
which represents a class of under actuated systems. A second
order super twisting algorithm (STA) is used to provide better
positional accuracy and robustness against parametric varia-
tion and external disturbances with alleviation in chattering.
A smooth control is synthesized using STA to exploit the
robustness properties of sliding-mode controllers to ensure
finite time convergence of the states. The flexible manipulator is
actuated by a DC motor and the flexibility of the link is modeled
as a linear torsional spring with stiffness. Comprehensive
comparison between sliding mode control (SMC) and SOSMC
is done in this study to show the effectiveness of the proposed
strategy.

Keywords – Flexible Link Manipulator; Higher Order Sliding
Mode Control; Super Twisting Algorithm

I. I NTRODUCTION

Flexible manipulators are robotic manipulators made
of light-weight materials due to which, reduction in weight,
lower power consumption and faster movement can be
realized. Light-weight manipulators can be applied in gen-
eral industrial processes; e.g. pick and place, in dangerous,
monotonous and tedious jobs, in the space shuttle, in bio-
medical instrumentations etc. However, due to its light-
weight, vibrations are inherent in the flexible link manip-
ulator (FLM) that limits its wide applicability. The problem
of link flexibility, not only makes the dynamic modeling
of FLM very challenging but turns its uncertain behavior
at the free end into a complicated control problem. The
control strategies applied so far to flexible robots include
proportional derivative control, computed torque control,
active damping control, adaptive control, neural network
based control, lead-lag control, sliding mode control, stable
inversion in the frequency domain, stable inversion in the
time domain, algebraic control, optimal and robust control,
input shaping control and boundary control. On the problem
of flexibility, many researchers have tried improving the dy-
namic models and incorporating different control strategies.
However, in spite of all the research devoted to modeling
and controlling these kind of robots, [1]- [4], there is no
universal solution for the control. A survey paper [5], gives
a complete, detailed overview of the work done in this field.

Difference between the actual plant dynamics and its
mathematical model used for the design of the controller
mostly come from external disturbances, unknown plant
parameters, and unmodeled dynamics. Designing control
that provides the desired closed-loop system performance
in the presence of these disturbances/uncertainties is a
challenging task. Hence the development of robust control
methods attracted the control community in the modern
era. But sliding mode control has been proved to be the
most successful approach against the other robust control
techniques as adaptive control, optimal control,H∞ con-
trol and backstepping technique, etc in handling bounded
uncertainties and external disturbances.

Sliding mode control (SMC) systems provide an effective
and robust means of controlling nonlinear plants. The main
advantage of this control methodology is insensitivity to
disturbance and parameter uncertainties. This is achieved by
steering the system states to a simple predefined function,
called as sliding surface and designing a proper control input
to maintain the states on this manifold thereafter. Significant
research is been done in this field. The already matured
classical SMC theory received a significant boost when new
”second order” ideas appeared with ”higher order” concepts
[6]- [9]. The limitations of the conventional sliding modes
are:
1. The classical sliding mode design approach requires
sliding variable degree to be equal to one with respect to
the control input which constrains the choice of the sliding
variable.(Relative degree is the order of the derivative of the
constrained variable, in which the control appears explicitly.)
2. SMC yields high frequency switching control action
leading ”chattering effect”, which is difficult to avoid or
attenuate.
These limitations of classical SMC are overcome by a
generalized(rth) order higher sliding mode controllers
(HOSMC). Main features of HOSM are

• This can force the sliding variable and its( r-1
)successive derivatives to zero.

• For this approach, there is no restriction on relative
degrees.

• As the high frequency control switching is pushed
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in the higher derivative of the sliding variable,
chattering is significantly reduced.

• No detailed mathematical model of the plant is
required.

• As the integration of the signum function is utilized
in synthesizing the control, it becomes continuous.

. [6] [7] [9]
Several second order sliding modes control algorithms are
introduced such as twisting and super-twisting controllers,
the suboptimal control algorithm, the control algorithm with
prescribed convergence law and the quasi-continuous control
algorithm, etc.

A. Motivation

Conventional control techniques, though easy to design
and implement, cannot give robustness against external and
internal disturbances and parametric uncertainties. Classical
SMC to control single link flexible manipulator (SLFM) has
been implemented by many people [10]- [13], but the issue
of chattering remains.
The troublesome chatter of SMC can be reduced by HOSMC
approach removing the relative-degree restrictions, preserv-
ing the advantages of SMC and improving its accuracy.
Out of second order sliding modes(SOSM), super-twisting
algorithm is conceptually different from the others, as it
depends only on the actual value of the sliding constraint,
while the others need the first derivative of the sliding
variable. Secondly, it is effective only for anti-chattering
purposes as far as relative-degree one constraint variables
are dealt with. Applications in HOSM are very recent though
the theory is old. Hence, in this study, a second order super-
twisting controller is used to control the position of the
SLFM to reduce the chatter in the control input.

B. Outline of the paper

For a better understanding of this work, it is organized as
follows. Starting with the introduction in Section I, physical
model of the single-link flexible manipulator is presented
in brief in Section II. The HOSM scheme is explained in
Section III along with the super twisting algorithm. Section
IV elaborates the design of a stable sliding surface and
design of a control law. Section V shows the simulation
results and Section VI concludes the work.

II. DYNAMICS OF SINGLE LINK FLEXIBLE
MANIPULATOR (SLFM)

In this work a single link manipulator actuated by a DC
motor is considered as a plant. Fig.1 shows a schematic dia-
gram of SLFM. Following are the parameters and constants
of the plant:
α : Tip deflection (deg.),
θ : Motor shaft position (deg.),
Tl : Load Torque (N.m),
Beq : Viscous damping coefficient,

Kstiff : Total stiffness of model (N.m/deg.).
Jlink and Jeq : Moment of inertia of link and equivalent
moment of inertia of the model resp in (Kg m2).
Due to the flexible nature of the link, when it is actuated
by an angleθ at the motor end, the tip gets displaced by an
angleα, as shown in the diagram. Assuming, tip deflection
angleα to be small, it is approximated as
α = D

L , where D: Displacement of the tip of SLFM and L:
Length of the link.
The flexibility of the link is modeled as a linear torsional
spring with stiffness K.

Fig. 1: Schematic diagram of flexible link manipulator

Courtesy:Quanser Manual

The equations of motion for this system, are taken from
[14]. The system dynamics is obtained using the Euler-
Lagrange formulation. The state space representation of
SFLM is written as

θ̈ =
Tl

Jeq
−

Beq θ̇

Jeq
+

Kstiffα

Jeq
(1)

α̈ = −Kstiff (
1

Jeq
+

1

Jlink
)α+

Beq

Jeq
θ̇ −

Tl

Jeq
. (2)

(1) and (2) represent the dynamics of FLM.
DC motor is used to generate the necessary torque. The
schematic is shown in Fig. 2.

Fig. 2: DC Motor Model

Courtesy:Quanser Manual

Substituting the value of load torque from actuator
model,

θ̈ = −p1θ̇ + p2α+ p3Vm (3)

α̈ = p1θ̇ − p4α− p3Vm (4)

whereVm is the motor input voltage.
The nominal values are taken from [14] asBeq = 4 ∗ 10−3
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, Jlink = 1.3978 ,Jeq= 0.002 andKstiff= 0.0057.
p1, p2, p3, p4 are constants obtained from the data of the
model.
Definingx1 = θ, x2 = α, x3 = θ̇, x4 = α̇ andVm = u and
using (3) and (4), the system is represented as

ẋ1 = x3 (5)
ẋ2 = x4

ẋ3 = p2x2 − p1x3 + p3u

ẋ4 = −p4x2 + p1x3 − p3u.

The state space representation is written in the compact form
as

ẋ = Ax + bu
y = Cx (6)

where,A =







0 0 1 0
0 0 0 1
0 212.7091 −19.6573 0
0 −616.9655 19.6573 0







x = [ x1 x2 x3 x4 ]
T

b =







0
0

34.6024
−34.6024






C =

[

1 0 0 0
0 1 0 0

]

.

The system dynamics with the disturbance can be written as

ẋ = Ax + b(u+ d) (7a)
y = Cx. (7b)

where ’d’ represents lumped disturbance which includes
parametric uncertainties and matched external disturbance.
Some facts are

1) pair (A,b) is controllable,
2) A, b, C are known matrices ,
3) bounds on the uncertainties are known.

III. H IGHER ORDER SLIDING MODE

A. Preliminaries

Various methods of chatter reduction have been reported
in the literature such as use of sigmoid or saturation func-
tion, use of fractional order calculus, use of disturbance
observer and many more [15]- [18], but they suffer from
the main drawbacks of deterioration of accuracy and system
robustness. The higher-order sliding mode approach has
been developed over the last two decades not only for
chattering attenuation but also for the robust control of
uncertain systems with relative degree two and higher.
HOSM actually is a motion on the discontinuity set of a
dynamic system understood in Filippov’s sense [19]. The
sliding order characterizes the dynamics smoothness degree
in the vicinity of the mode. A sliding modeσ ≡ 0 may
be classified by the number r, obtained by taking successive

derivatives ofσ(r), till u appears explicitly. That number
is called the sliding order [6], [7]. The main problem in
implementation of HOSMs is increasing information de-
mand, i.e. sliding variable and its derivatives; which are
generated through differentiators. Differentiators introduce
the measurement noise, whose negative effects on the over-
all closed-loop performance dramatically increase with the
number of differentiation stages [20], [21]. Examples of r-
sliding modes attracting in finite time are known for r = 1
(which is trivial), for r = 2 [8], [19], [22]- [24], and for r
= 3 [9]. Arbitrary order sliding controllers with finite-time
convergence are recently presented [25], [26]. Generally, any
r-sliding controller keeping, sliding surfaceσ = 0 needsσ,
σ̇,..., σr−1 to be available. The only known exclusion is
a ”super-twisting” 2-sliding controller, which needs only
measurements ofσ. 2-sliding mode with respect to the
constraint functionσ is shown in Fig. 3.

Fig. 3: Second order sliding mode trajectory

Courtesy: Proceeding on VSS10

B. Simplified block diagrams for SMC and HOSM

Consider a nominal system as

ẋ = Ax +B(u + ρ(t, x)), (8)

where x ∈ R
n, u ∈ R and ρ(t, x) ≤ DM the bounded

uncertainty with known bounds. The sliding surface
is designed such thatσ = CT (x) and during sliding,
σ(t, x(t)) ≡ 0. Differentiating this equation and from (8)

σ̇ = CTAx + CTBu+ CTBρ(t, x) (9)

u = (CTB)−1(−CTAx) + φ(σ) (10)

Some choices of

φ(σ) = −ksgn(σ)

= −λσ − ksgn(σ)

= −k|σ|1/2sgn(σ).

These are the well known reaching laws. The block diagram
for this scheme is depicted in Fig.4.
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Fig. 4: Simplified representation of SMC scheme

To make this discontinuous control input, a continuous
one, an integrator is added to mitigate the chattering. For
super twisting algorithm, equation (9) is re-written

σ̇ = φ(σ) + CTBu+ CTBρ(t, x)

and this equation has to be finite time stable. Designφ(σ)
such that withρ(t, x), σ goes to zero. With a choice of
φ(σ) = −k|σ|1/2sgn(σ) , non-vanishing perturbations can
not be rejected, hence it is modified as,

φ(σ) = −k1|σ|
1/2sgn(σ) + z

ż = −k2sgn(σ)

}

(11)

This is a super-twisting algorithm (STA). The block diagram
for the same is as shown in Fig.5.

Fig. 5: Simplified representation of STA scheme

C. Super-twisting algorithm

This algorithm has been developed to control systems
with relative degree one in order to avoid chattering in
variable structure control. Also in this case the trajectories on
the 2-sliding plane are characterized by twisting around the
origin (Fig.6). The continuous control law u(t) is constituted

by two terms; the first is defined by means of its discontinu-
ous time derivative, while the other is a continuous function
of the available sliding variable.

Fig. 6: Super-twisting algorithm phase trajectory

Courtesy: Proceeding on VSS10

The super twisting algorithm (STA) as given by(11)
ensures exact finite time convergence, for any bounded
uncertainty; for some constantsk1 and k2 to the second
sliding mode setσ = σ̇(t) = 0; without usage ofσ̇ [25],
[26]. If we consider system (11) as havingσ as the measured
output, the STA is an output-feedback controller.

IV. D ESIGN OF A CONTROL

A. Design of a sliding surface

In this study, a sliding surface is chosen as

σ = cT (x) (12)

wherecT is a design parameter which is designed using QR
decomposition method and the system state vector is used
in designing the conventional sliding surface.

B. Design of Control Law

To design the control law, differentiating (12),

σ̇ = cT (Ax +Bu) (13)

Also as per super twisting algorithm,

σ̇ = −k1|σ|
1/2sgn(σ) + z (14)

ż = −k2sgn(σ) (15)

From (13) to(15),

u = (cTB)−1(−cTAx− k1|σ|
1/2sgn(σ)−

∫

k2sgn(σ))

(16)
When this control input is substituted in the system equation,
σ and σ̇ approach to zero in finite time duration.
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V. SIMULATION RESULTS

Some simulation studies are carried out on a single link
flexible manipulator plant to demonstrate the effectiveness
of the proposed HOSM controller. The system is analyzed
with ±10% parametric variations of their respective nominal
values alongwith a matched disturbance of 0.01sin(t) in the
input channel. The simulation parameters are:
For HOSMC,k1 = 4 andk2 = 3
and the sliding surface matrix iscT = [1.7321 −
19.0164 1.0784 − 0.3358]
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Fig. 7: Output Angular Displacement
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Fig. 10: Rate of change of Tip Displacement

0 2 4 6 8 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

time(sec)

co
nt

ro
l i

np
ut

 u

 

 

SMC; |u|
2
=38.12

HOSMC; |u|
2
=5.7

Fig. 11: Control Input

Fig. 7 shows output angular displacement while Fig.
8 shows angular velocity. Fig. 9 and Fig. 10 shows tip

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013

704



displacement and rate of change of tip displacement respec-
tively. The angular displacement and angular velocity settle
in finite time using higher order SMC and it is observed
that HOSMC shows prominently less vibrations of the tip
position. Thus the vibrations of a flexible link are reduced
to a great extent using the proposed HOSMC. The maximal
amplitudes during transients are reduced significantly using
HOSMC as seen in all of the above graphs. The control
efforts required by HOSMC are reduced by approximately
6 times than that of traditional SMC, as seen from Fig. 11.
Also noticeable chattering attenuation in the control input
for the proposed HOSMC can be observed in Fig. 11.

VI. CONCLUSION

A higher order sliding mode controller is proposed and
successfully applied to control position of a single link
flexible manipulator. Simulation results are presented to
demonstrate the effectiveness of the HOSMC maintaining
the advantages of SMC. The contributions of the work are
1) substantial reduction in the control effort,
2) alleviation of chattering in the control input to a great
extent with respect to conventional SMC.
3) reduction in the vibrations of a tip of the flexible link.
Thus the proposed super twisting SOSMC outperforms the
SMC in attenuating the chattering with less control efforts.
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