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Abstract—New generation robots, meant for physical hu-
man robot interactions, are no longer rigid; it has become
soft in terms of introduction of considerable flexibility at the
actuated joints, flexibility of the links and in terms of compliant
coverings. Safety requirement becomes primary in situations
where physical interactions occur, calling for compliance; but
accuracy and control bandwidth get compromised. While it
has been established in literature that flexible-link-robots are
difficult to control, it is found feasible to recover some of
the lost bandwidth by varying stiffness in flexible-joint-robots,
maintaining safety of human during interaction. This article
addresses development of such a flexible robot joint actuation
system with stiffness/impedance variability. This variability
of stiffness is achieved passively by the flexible transmission
interposed between the prime mover and the actuated link,
and in doing so, nonlinearity in the elastic transmission char-
acteristic becomes essential. The Variable Stiffness Actuation
(VSA) system of this article employs an elastic element having
an exponential force-displacement characteristic, which has
the property of stiffness varying linearly with transmission
force. This property is favourably utilized in the estimation
of stiffness, and in turn can be used in control of stiffness.
The variable stiffness actuation is realized here by assembling
two transmissions in agonist-anatagonistic arrangement in
order to achieve simultaneous control of both joint-motion
and stiffness, resembling biological musculo-skeletal system. By
adding nonlinear damping elements in parallel to the elastic
transmission, variability in mechanical impedance has been
achieved. Joint stiffness is computed with the estimated stiffness
of individual transmissions, which are obtained experimentally.
Extended Kalman Filter is employed for the estimation of
stiffness and other impedance components. Results are reported
in support of the effectiveness of the joint actuator in achieving
variability in stiffness and impedance and their estimation.

Keywords – Exponential elastic transmission; Mechani-
cal impedance; Variable-Stiffness/Impedance-Actuation; Agonist-
Antagonistic arrangement; Extended Kalman Filter

I. INTRODUCTION

Introduction of flexibility and variation of intrinsic pas-
sive impedance is becoming essential in enhancing ability

and performance of actuation systems in safety critical ap-
plications involving physical-human-machine-interaction, in
many cases the machine being a robot. Unlike conventionally
actuated machine joints, here the joints are not rigid. This
implies that there exists a flexibility in the transmission
between the actuator shaft and the actuated joint shaft. In
variable stiffness/impedance actuation, this joint compliance
varies according to the need of task execution. In physically
interactive tasks by machine with operators, the safety of hu-
man is of prime importance. A joint can be made safe against
accidental impact hazards of fast moving machine parts by
attenuating the reflected inertia through the compliance (see
[1]). Hazard due to impact is a function of effective inertia
and relative velocity of the impacting body. Thus, during a
task execution, when positional accuracy is more demanding,
the joint can be made stiff at low velocity, where as during
gross motion with high velocity, the joint can be made
compliant, maintaining operator’s safety intrinsically against
accidental impact. This requirement leads to variability in
stiffness and in turn impedance.

Impedance control, as a general method, has been put
through for robotic manipulation in interactive tasks by
Neville Hogan with the seminal work in [2]. However, as
early as in 1977, probably the first ever programmable stiff-
ness control device was built by Hanafusa and Asada ([3])
in a mechanical hand. Nevertheless, impedance variability
in everyday task ever prevail in the biological world (e.g.
[4]). Variable stiffness mechanisms have been successfully
implemented in other fields of research as well, such as
legged locomotion, exoskeletons and rehabilitation devices,
in structural vibration control, and automotive suspension
system. One important attribute of stiffness variability here
is that it is achieved passively, and not by active control.
A passively variable stiffness mechanism possesses an elas-
tic element or spring, where the transmitted force bears
a nonlinear relationship with the deflection the element
undergoes. Many of the designs of elastic transmissions in
literature have been done not considering a specified elastic
function in the first place. In such designs either a nonlinear
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elastically deformable material (e.g. rubber) has been used,
or, a mechanism with a linear spring has been built ([5], [6],
[7], [8]). This article presents development of a new variable
stiffness/impedance joint actuator, where, the elastic function
of the transmission is designed from a first principle obtained
from passive property of biological muscle. Subsequently,
the report presents a method for joint impedance estimation.

II. DESIGN OF NONLINEAR ELASTIC TRANSMISSION
ELEMENT

In obtaining variability in stiffness passively, the elas-
tic element should essentially possess a nonlinear force-
displacement characteristic. The design of elastic element
gets motivated from the nonlinear passive elastic behaviour
of an animal muscle fibre.

A. Principle

The principle is obtained from a mathematical model
of biological muscle fibre from literature. Muscle fibres are
found to become progressively stiffer on stretching passively.
Pinto and Fung ([9]) observed experimentally (on rabbit
heart muscle) that derivative of muscle stress, s with respect
to Lagrangian strain, εL is proportional to stress s at that
point. This leads to

L0

A
dFS

dx
= α

(
FS

A
+β

)
, (1)

where, FS ≥ 0 is the force transmitted, A the constant cross
sectional area, x≥ 0 is the elongation, L0 = rest length, and
α and β are constants. This passive behaviour of a muscle
fibre gives rise to an interesting property, where, the stiffness
of the elastic transmission becomes linearly related to the
transmitted force and the force displacement function thus
bears an exponential characteristic (see author’s paper [10]
for derivation). Defining stiffness as σ = ∂Fσ

∂x , force function
and stiffness are given by the following:

FS = Φ(x) = F0 +Fσ = F0 + k1 exp(k2x) , (2)

where F0 is an initial force offset, Fσ is the elastic force. k1
and k2 are constant coefficients and they can be estimated
using L0, A, α and β in (1). This leads to linearity between
stiffness σ and Fσ ,

σ = k2Fσ . (3)

The linear property is favourably used in the estimation of
impedance parameters through an EKF procedure.

B. Spring Design and Physical Realization

In order to obtain the elastic function of (20, first a
specification set is needed in terms of (i) maximum elas-
tic deflection Xmax, (ii) maximum force to be transmitted
FSmax, (iii) minimum force, or force bias FSmin, (iv) rest
length/preloading L0, (v) smallest deflection δ0 and relative
force error at x = 0, C0. The relative force error is defined
as δFS

FS
= 1

Φ(x)
dΦ(x)

dx δx. The detailed procedure for designing
the spring can be found in [10].

For the chosen specification of maximum load capacity
FSmax = 200N, maximum deformation Xmax = 20mm, L0 =
5mm, FSmin = 5N, C0 = 0.2N/N and δ0 = 1mm, value of
k2 is found to be 0.2658 (α = 1.3288). The desired spring
function thus derived to be

FS = 0.9772exp(0.2658x)+1.2372, x≥ 0. (4)

It is to be noted that the stiffness does not depend on
the force offset F0. In practice, the force bias will show
a different value and will depend on the size of the physical
step in the beginning of the machined profile (see middle
and right figures of Fig. 1).

The physical realization of the exponential function is
achieved through using a cam surface and spring loaded
cam-follower mechanism. The cam profile is synthesized in
such a way that the pulling force on the pulling rod of the
spring follows the exponential function. Principle for profile
synthesis is shown in left figure of Fig. 1, while the middle
figure shows the actual profile surface. The cam profile is
realized in an aluminium block by CNC milling. A V-groove
provides guidance to the cam-follower roller, which is again
loaded by a linear spring. The design spring constant of the
linear springs is 5N/mm; although the actual linear springs
used in the spring assemblies differ in the values of spring
rate.

Fig. 1. (Color online) (Left) Virtual work principle is applied to
synthesize the geometric profile Ψ(x). Ff is friction-force, R is the
reaction, θ is the instantaneous contact angle, r be the roller radius.
Linear spring is of stiffness ks. (Middle) CAD model of the designed
exponential Cam profile and the actual machined component with Cam
surface. (Right) Assembled Exponential spring.

In the present article, an antagonistic joint has been
developed with two such springs as nonlinear transmission
elements. However, the actual elastic characteristics of both
the nonlinear transmissions show deviation from the de-
signed one due to the difference in the spring constants of
the linear springs on cam-follower used in the construction,
assumption of zero roller radius, and dimensional tolerance
of manufactured components. A step in the beginning of
the profile surface decides the force offset, which becomes
different in different assemblies.

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013

750



C. Nonlinear Damped Elastic Transmission

A nonlinear damping element is added in parallel with
the elastic element by using an off-the-shelf miniature
damper obtained from ACE GmBh, model FRT-D2-152.
The force velocity characteristic from data sheet is well
represented by an odd polynomial function

Fd = d0sgn(ẋ)+d1ẋ+d2ẋ3, (5)

where, d1 and d2, are constant coefficients, d2 being negative
and d0 is the coulomb friction. The damping element is
shown in the photograph and in the solid model of Fig. 2

The rotary damper and a miniature encoder of Hengstler
make (model PC9S051204N) are mounted through a rotary-
to-linear conversion. A miniature tensile force sensor of
make Futek (model FBB300) is attached at the pulling rod
end to measure the total transmission force. The assembly
of the nonlinear transmission is presented in the photograph
of Fig. 2.

Fig. 2. (Color online) (Top) Solid model of the assembled damped
nonlinear transmission. (Bottom ) Photograph of the transmission
assembly. The rotary damper is assembled by the use of a rotary-
to-linear conversion. An encoder is used to measure the displacement
through the same rotary-to-linear conversion. Spring is designed for
deflection of 20mm. Total length of assembly, including force-sensor
and base, till pulley-end is 150mm.

III. VARIABLE STIFFNESS/IMPEDANCE ACTUATOR

Variable stiffness actuators can be realized broadly in
two ways: (1) through explicit stiffness control, where an
independent motor is used for stiffness variation, and (2)
agonist-antagonistic realization, where, two motors are used
in the same time for simultaneous control of motion and

Fig. 3. (Color online) (Top Left) Explicit realization of variable
stiffness actuation, where, motion and stiffness control are decoupled
and controlled independently by respective motors. (Top Right) Sim-
ple antagonistic realization for simultaneous control for motion and
stiffness, where, two motors in antagonism are used to control both
stiffness and motion in the same time. This resembles a broad class of
musculo-skeletal actuation in animal world. (Bottom Left) Schematic
of cross-coupled antagonistic realization. (Bottom Right) Bi-directional
antagonistic actuation.

stiffness of the joint. These are illustrated in Fig. 3. Again,
antagonistic realizations can be broadly divided into (a)
simple antagonistic, (b) cross-coupled antagonistic and (c)
bi-directional antagonistic arrangements (see [11]). In this
article, development of a variable-stiffness-actuator through
simple antagonistic realization is reported, which resembles
a broad class of biological musculo-skeletal actuation sys-
tem.

A. Development of Simple Antagonistic Actuator

A Variable Impedance Actuator is assembled with the
simple antagonistic realization utilizing two damped-elastic-
transmissions developed in the previous section. The actuator
joint consists of a joint shaft, driven by a capstan pulley,
which in turn is actuated by two positive drive tendons.
Multi-strand steel wire-ropes are used as tendons.Tendons
are pulled by two geared DC motors. In each side of
the antagonistic arrangement, the nonlinear transmission
element is interposed between the motor pulley and the
capstan pulley in series with the tendon. Tendon in each side
is routed through idle pulleys in such a way that the force
sensed by the force-sensor on the pulling rod (see Fig. 2) is
twice the tendon tension. The whole flexible joint assembly
is illustrated in the solid model and the photograph of Fig. 4.

IV. TRANSMISSION AND ACTUATOR MODEL

The transmission is modeled by dynamics of a spring-
damper-mass system, with the nonlinear elastic and damping
described before:

F(t) = FM(ẍ(t))+Fd(ẋ(t))+Fσ (x(t))+d0sgn(ẋ)+F0 ,
(6)

where, FM = mẍ, FS = Fσ +F0, d0 is the static friction, and
t is time. Elastic and Damping force functions are given
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Fig. 4. (Color online) (Top) Solid model rendering of the assembled
flexible joint actuation system. (Bottom) Photograph of the assembly.
Tendon from the capstan pulley is routed through several idle pulleys
and finally terminated on the motor pulley. One of the idle pulley
moves with the pulling rod of the flexible transmission element and
as the tendon is tensed, the rod is pulled, altering the impedance of the
transmission.

by equations (2) and (5) respectively. The implicit dynamic
force balance in (6) (in terms of unknown coefficients) can,
therefore, be expressed as

F = f (x, ẋ, ẍ,d0,d1,d2,k1,k2,F0,m) (7)

and the problem reduces to identifying the unknown coef-
ficients. To note that, k2 does not appear linearly in (2),
in contrary to other parameters, which appear linearly. This
problem is overcome in Extended Kalman Filter by estimat-
ing only the stiffness, exploiting the linear relation between
stiffness and force (instead of full parameter estimation of
the force-displacement function).

A. Impedance of the Nonlinear Transmission

Impedance is said to be the resistance of the transmission
manifested in changing the dynamic states of it. Impedance
components of the transmission are defined as

Generalized Stiffness: σ = ∂ f
∂x

Generalized Damping: D = ∂ f
∂ ẋ

Generalized Inertia: M = ∂ f
∂ ẍ

(8)

and the following differential form is obtained:

δF = Mδ ẍ+Dδ ẋ+σδx. (9)

In practice, it is very difficult to directly measure the
impedance components by evaluating the ratios of respec-
tive differential forces and differential motions, especially,
in steady states. A direct method, in principle, requires
knowledge of the elastic and damping models in (2) and
(5) respectively.

B. Stiffness and Impedance at the Joint

In modeling the entire transmission, each tendon is
considered as a linear spring in series with the nonlinear
lumped mass-spring-damper system as shown in Fig. 5.

Let, the stiffness of the joint is set by moving the motors
(configured as position actuators), as shown in the figure,
such that the system attains an equilibrium configuration and
at that operating point the stiffness of the nonlinear spring is
set at a value of σnoni, i = 1,2. Once reached an equilibrium,
the joint is kept at stationary. The force sensor on each
branch measures twice the tendon tension. Similarly, encoder
on each nonlinear spring measures half the net displacement
the tendon undergoes. Let, the effective stiffness of the linear
tendon (routed over the pulleys) be Ktendoni, i = 1,2. Net
stiffness of each branch then becomes

Kbranchi =
σnoniKtendoni

σnoni +4Ktendoni
, i = 1,2. (10)

Let R denotes the mean radius of the capstan pulley. Then
the stiffness at the joint Kθ is derived in a straight forward
way to be

Kθ = R2
2

∑
i=1

σnoni Ktendoni

σnoni +4Ktendoni
(11)

Fig. 5. (Left) Mass-spring-damper model of the joint, where ms i
are equal to the generalized inertias Mi, i = 1,2. φi are the nonlinear
elastic functions. (Right) Schematic of the actual transmission and joint
assembly. λi = fi are the force sensor readings. Mean radius of the
grooved capstan pulley is R = 21.5mm.

If, the inertia of the robot joint shaft (and link) is J joint
and ms1 and ms2 are the lumped masses in the nonlinear
transmission model, then the effective robot joint inertia
(constant) becomes

Jθ =
1
2
(M1 +M2)R2 + J joint , (12)

where, Mi = ms i are generalized inertia and constant. Sim-
ilarly, at any operating point (velocity) of the nonlinear
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spring units, if the generalized damping rates are D1 and D2,
then with the constant damping present at the joint (D joint ),
effective joint damping rate becomes

Dθ =
1
2
(D1 +D2)R2 +D joint . (13)

Following section will discuss the estimation of the
impedance components of the transmissions (σnoni, Di and
Mi, i = 1,2) and in turn the estimation for the joint.

V. ESTIMATION OF IMPEDANCE

Some work on estimation of impedance in variable-
impedance-actuation is available in literature; for example,
[12] attempts a model free parametric approach, and [13]
employs concept of residual torque for model free estimation
of impedance in flexible systems. In this article estimation
of impedance components in (8) is attempted employing
a first order Extended Kalman Filter to estimate dynamic
states and parameters of a partial model simultaneously and
a procedure is developed. The novelty of the method is
that it does NOT utilize the direct force model of (7) (i.e.
the elastic model in (2) where k2 appear nonlinearly) and
damping model in (5). The stiffness-force linearity of the
exponential elastic function in (3) is exploited to eliminate
parameter nonlinearity.

A. Estimation of Impedance using Stiffness-Force Linearity

This formulation requires knowledge of force rate, so
that only k2 needs to be estimated for generalized stiffness
and only d2 for generalized damping; the force offset, F0 and
coulomb friction d0 do not either appear in the formulation
(since they are independent of the dynamic states). It is
assumed that the following derivative exists

Ḟ(t) =
∂FS

∂x
ẋ(t)+

∂Fd

∂ ẋ
ẍ(t)+

∂FM

∂ ẍ
...x (t), (14)

such that Ḟ = σ ẋ+Dẍ+M
...x using definitions in (8).

Time rate of stiffness is given by

σ̇(t) = k2σ ẋ, (15)

and the time derivative of the damping rate is obtained as

Ḋ = 6d2 ẋ ẍ. (16)

Equations (14), (15) and (16) are used in the EKF formu-
lation in estimating the states x, ẋ and ẍ and the impedance
components σ(t), D(t) and M. The pretension force F0 and
the static friction d0 can be estimated in a parallel filter
(which may be done at a slower rate) based on the total
measured force and the total estimated impedance force.

B. EKF Implementation

In this EKF framework for simultaneous state and
impedance estimation, only k2 and d2 appear in the state
vector. The estimator needs time rate of force as input, which
is obtained using a first order filter from the force-sensor
data. Measurement in the filter is the deflection; velocity
and acceleration are estimated within the filter.

Defining the state vector as Z = {zi | i = 1 to 8} =
[ x ẋ ẍ σ D M k2 d2 ]

T ( parameters appearing
linearly) the state equations are described below:

zk+1
1 = zk

1 +T zk
2,

zk+1
2 = zk

2 +T zk
3,

zk+1
3 = zk

3−
(zk

2zk
4+zk

3zk
5)T

zk
6

+ Ḟ(k)T
zk
6

,

zk+1
4 = zk

4 +3zk
2zk

4zk
7T,

zk+1
5 = zk

5 +18zk
2zk

3zk
8T,

zk+1
6 = zk

6, zk+1
7 = zk

7, zk+1
8 = zk

8,

(17)

where, T is the sampling time. Above state equations are
used in the EKF implementation with input as force rate and
measurement as the elongation/deflection of the transmis-
sion. The whole EKF procedure is omitted here for limitation
in space, but it is similar to any regular EKF implementation.

VI. MODELING THE SENSOR NOISE

The impedance estimation procedure exploiting the lin-
earity between stiffness and elastic force, requires the knowl-
edge of force rate in the input. The force rate is obtained
using a first order filter. Fig. 7 shows a time varying force
and its rate used as input to the EKF for experimental
estimation of the impedance components in this article. In
the estimation process, it is required to know the variances
of force sensor output (and its rate) and the nature of sensor
noise.

A pre-calibrated standard force gauge of IMADA make
(model DS2-200N) is used as reference for determining the
force sensor error model and calibration. Data are logged at
100 Hz frequency for a long time in a National Instruments
based data acquisition system using Labview R© and data are
then analysed for noise content. The White nature of the
noise is more or less observed in the left figure of Fig. 6 (see
[14]). To examine the noise pattern in force rate, experiments
are carried out with ramp input and data are logged. The
ramp force input is obtained by using a linear spring of
constant stiffness and moving the motor at slow constant
velocity. Again, nearly white nature of the noise in force
rate is observed, as indicated in the right figure of Fig. 6.
An error model of the position sensor (encoder) has been
obtained in [15]. Encoder noise as well is found to be White
in nature. Variances obtained from experiments are 0.017N
for force sensor, 0.088N/s for force rate and 0.01mm for
position, which are used to form covariance matrices in the
EKF procedures.
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Fig. 6. (Color online) (Left) Allan variance plot of force sensor data,
where a slope of −1 is approximately observed ensuring white nature
of noise. (Right) Allan variance of force-rate is plotted, inferring white
nature of the estimation noise.

VII. ESTIMATION RESULTS AND DISCUSSION

Extensive experiments have been carried out in estimat-
ing the impedance components of the individual transmis-
sions as well as estimation of resulted impedance at the joint.

A. A Least Square Static Initial Estimate

Before running the EKF, a weighted least square type
parameter identification has been carried out on the elastic
model of (2) through large number of experiments.

Except k2 in (2), all the unknown parameters of the
elastic and damping function appear linearly in respec-
tive relationships. Therefore, this initial k2 is identified
offline using a nonlinear least square fit. Initial identifi-
cation of all other parameters are then refined by solv-
ing a over-constrained system of simultaneous equations
in (18) using Weighted Pseudo Inverse. Defining X =
[ m d0 d1 d2 k1 F0 ]

T ∈ Rq, q = 6,

F = AX +W , (18)

where F ∈ Rp; W ∈ Rp is a zero mean disturbance vector
with E[W W T ] =Rw, A∈Rp×q have entries from logged and
estimated data of position, velocity, acceleration, p being the
number of logged data set. A minimum variance least square
estimate, X̂ and its variance, RX , can be obtained as ([16]):

X̂ = (AT R−1
w A)−1AT R−1

w F ,
RX = E[(X̂−X)(X̂−X)T ] = (AT R−1

w A)−1.
(19)

The initial elastic model identification gives the follow-
ing results with variances found to be 0.0202 for k1 and
0.1741 for F0 with consistent units:

FS = 16.39+0.776exp(0.2672x),
FS = 8.269+7.031exp(0.1656x). (20)

It is found that one of the exponential-spring follows better
the design characteristic in (4) than the second one. The
linear springs used in the assemblies are obtained from
market and they are found to deviate from the design

TABLE I. COEFFICIENTS k2 , d2 AND m AT CONVERGENCE OF EKF
ESTIMATION (WITH CONSISTENT UNITS).

Transmission-1 Transmission-2
At conv. k2 d2 m

Mean 0.2711 -0.1089 0.3755

Variance
×10−4 0.7638 0.9851 1.053

k2 d2 m

0.1673 -0.1170 0.2295

0.8743 0.6098 0.7124

stiffness of 5N/mm. Secondly, due to small after-assembly-
differences (and manufacturing tolerances), the initial force
offset in the second nonlinear-spring is found to be different
from the first one. The values obtained above is only for
reference (to use in the initialization of the EKF). However,
both the nonlinear-springs show exponential behaviour. The
impedance estimation through EKF does not require the full
model of the transmission, rather only a partial knowledge,
which exploits the affine relation between stiffness and
elastic force.

B. Estimation through EKF procedure for individual Trans-
missions

The EKF formulation needs force rate as input. With
a sinusoidally varying position of the motor, force input is
measured by the force sensor and the force rate is estimated
using a first order filter. The varying force input and force
rate are reported in top two figures of Fig. 7 for one of
the transmissions. Good convergence is obtained in the
estimation of the states; results for one of the transmissions
are shown in the bottom three figures of Fig. 7.

The results of estimation of Generalized Stiffness, the
Generalized Damping Rate and Generalized Inertia of one
of the nonlinear-transmission are presented in Fig. 8 and
good convergence is observed in general. Estimation of stiff-
ness requires only the evaluation of k2; similarly, estimation
of damping requires only the knowledge of d2. Values of k2,
d2 and m at convergence are shown in Table I. d2 assumes
a negative value, which is expected from the nature of
the damper characteristic indicated in manufacturer’s data
sheet. Evolution of stiffness and damping (mean values)
are illustrated in Fig. 9. However, the estimated generalized
inertia (perceived dynamic mass) is found to be small; a
possible reason may be that the mechanism is operated at
slow speed, giving rise to very small inertial force.

C. Joint Impedance Estimation

As described in section IV-B, once the impedance com-
ponents of the individual transmissions are estimated, it
becomes straightforward to find the impedance at the robot
joint using the relations in (11), (12) and (13). It is to
be noted that both transmission-forces and transmission-
deflections are absolute. Again, since the elastic elements
in the transmissions are not identical, equal position (antag-
onistic) inputs to the position controlled motors will cause
the equilibrium position of the robot-joint to move.

Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013

754



Fig. 7. (Color online) Force and force rate input to one of the
nonlinear transmissions and measurements. (Top) Input force sensor
reading. (Second) Estimated force rate. (Third) Measured and estimated
position, (Fourth) estimated velocity, and (Fifth) estimated acceleration
of deflection of the transmission.

Fig. 8. (Color online) EKF procedure is formulated exploiting the
stiffness-force affine relation. Results for one of the transmission are
shown (mean values). (Top) Generalized stiffness. (Middle) Generalized
damping. (Bottom) Generalized mass.

Fig. 9. (Color online) Estimated stiffness values against position
and damping rate against velocity of the flexible transmissions. (Top)
Transmission-1. (Bottom) Transmission-2

Experimental validation of estimation of joint impedance
is beyond the scope of this article, since it will require
elaborate experimental setup to apply time varying external
torque input to the joint shaft. By knowing the time varying
joint deflection (kept within a small value to be considered
in linear range) and its rate caused by the external torque,
it is possible to estimate the joint impedance about a set
operating point. It is kept as future work.

It is further to be noted that stiffness is an intrinsic
property of a flexible system. The input dependent stiffness
in an antagonistic flexible system is a property which lies in
the null-space of the antagonistic forces (this does not in-
clude stiffness change due to external load). In other words,
input dependent stiffness is related to the internal force
components of the antagonistic system. The tendon-force-
sensor readings can be decomposed into a force component
causing the motion of the joint (no external torque) and an
internal force. Again, using the stiffness-force linearity of an
exponential elastic function, the stiffness of the transmission
and in turn the joint can readily be estimated.

VIII. CONCLUSION

This article presents design and development of a Vari-
able Impedance Actuator for use with robots and other
machines requiring variability in actuation impedance and
meant for physical interactions with operator and en-
vironment. The variability in stiffness (and impedance)
is achieved passively. A passively varying stiffness (and
impedance) element requires a nonlinear force-displacement
elastic (and force-velocity damping) characteristic. This ar-
ticle presents design of such a nonlinear elastic element,
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inspired by the passive characteristic of animal muscle fibre,
which comes out to be an exponential one. The exponen-
tial behaviour imparts an interesting property, where, the
stiffness of the element becomes linearly related with the
elastic force. Development of a nonlinear damped elastic
transmission is depicted in this article, starting from a
biological first principle. This realization utilizes a cam
and spring-loaded cam-follower mechanism, where, the cam
surface is synthesized using the principle of virtual work
and thus the design attains a specified desired characteristic
of the transmission. Variability in damping is attained by
use of a nonlinear damper obtained off-the-shelf. Among
different possible realizations of variable stiffness/impedance
actuation systems, this article choses a simple antagonistic
arrangement for simultaneous control of motion and stiffness
variation. Subsequently, the article presents a first order
Extended Kalman Filter based procedure for estimating the
transmission impedances and in turn the joint impedance.
The procedure advantageously exploits the property of
stiffness-force linearity in the elastic system, which does
not require full knowledge of the elastic function; thereby
it reduces the complexity of the estimation procedure dras-
tically, compared to the estimation using full transmission
model. This reduces the uncertainties due to unmodeled
parameters. The implemented Kalman procedure requires
force and force rate as input and position (transmission
deflection) as measurement. Noise models for force and
force rate are obtained through extensive experiments and
they (and that of encoder) are found to be practically white in
nature to qualify for use in EKF formulation. Good tracking
convergence is obtained in each of the state estimations as
well as impedance component estimations. However, like
any other EKF method, this procedure suffers from indeter-
minacy of accuracy, but achieves good repeatability. Once,
the impedance components of the individual transmissions
are estimated, it is straightforward to obtain the joint stiffness
and impedance, where, effective tendon stiffness is also
incorporated.

It is kept as future work to carry out experiments
to validate the estimated joint impedance, which requires
elaborate experimental setup.
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