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Abstract— A Stewart platform has been designed by 
selecting commercially available components. Each of its six 
legs has spherical and universal joints respectively at the 
bottom and top ends of a piston-cylinder arrangement with 
the piston rod protruding out of the cylinder top. By a 
universal joint at the cap end at the bottom of each cylinder, 
the legs are mounted on a fixed horizontal frame. By 
electrical actuation of the valve for each cylinder, a six-DOF 
motion could be imparted to a cylindrical payload fixed on a 
circular disc. The motion is transferred through a spherical 
joint fitted between each piston rod and the disc. 
Corresponding to the specified payload pose range from its 
horizontal neutral, the inverse kinematic model has been 
used for simultaneously searching the piston stroke, the 
distance between the frame and the disc along with the 
locations of the joints, assuming each type arranged in a 
semi-regular hexagonal pattern. The discharge and pressure 
of a power pack feeding all the cylinders have been estimated 
by Matlab simulation of the inverse dynamic model for 
different velocity, acceleration and weight of the payload. 

Keywords—Inverse model, kinematics, dynamics, Six-DOF 
motion  

I. INTRODUCTION 

A Stewart platform [1] is the most popular parallel 
manipulator with six degrees-of-freedom widely used as 
laboratory-scale flight or ship-motion simulators. It 
involves six linearly extensible legs with active electric or 
hydraulic drive for each. In a conventional Stewart 
platform, the bottom end of each leg is connected by a 
spherical or universal joint to a stationary frame at the 
bottom and the top end is connected by a spherical joint to 
the moving platform that supports a payload on top. Legs 

only with prismatic joints between its upper and lower 
parts have been analyzed in the past, though nowadays 
various laboratories are exploring the use of ball-screw 
joints [2]. Both 6-SPS and 6-UPS configurations have been 
extensively analyzed [3-6], where 6 stands for the number 
of joints of same type, the first alphabet S or U 
corresponds to spherical or universal joint with the fixed 
frame at one end of each leg, P refers to the prismatic joint 
within each leg and the last alphabet S implies spherical 
joint with the moving platform at the other end.  

Joints at the bottom and at the top are usually arranged 
along the vertices of two regular [4] or semi-regular 
hexagons [3, 5]. Merlet [4] considered 3/6 configuration, 
in which one of the ends of two legs terminated to a 
common bi-spherical joint, each located at the vertex of an 
equilateral triangle. Controlling the input to each leg is 
necessary, causing its length to change, with the objective 
of carrying the top platform through desired position and 
orientation, together called the pose. Liu et al. [3] and 
Merlet [4] modeled both the forward and inverse 
kinematics of a Stewart platform and proposed simplified 
solution schemes for the forward kinematics. In particular, 
the inverse kinematics deals with estimating the neutral 
length and stroke of the legs from the specified range of 
desired platform pose. Employing Newton-Eulerian 
analysis, Dasgupta and Mrithyunjaya [5, 6] arrived at both 
inverse and forward models for the kinematics and 
dynamics. The inverse dynamics model enables 
determination of actuation force or torque that should be 
imparted to the payload in order to achieve its desired 
range of motions. 
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Fig. 1. Schematic of an electro-hydraulic Stewart platform 

Though electro-hydraulic actuation has been 
extensively used in many Stewart platform investigations 
[7-10], only a few of those deal with the pressure-
discharge relations of valve and cylinder under electrical 
actuation of the valve. For instance, Huang et al. [7] and 
Huang and Fu [8] verified the performance of their 
proposed sliding-mode control in an experimental set up 
that has electro-hydraulic valves and cylinders. But, the 
hydraulic details in the control model were not explicitly 
dealt with, depending on the sliding-mode control for its 
capability of dealing with uncertainties. On the other hand, 
Li and Salcudean [9] and Davliakos and Papadopoulos 
[10] considered the electro-hydraulic aspects in their 
control analysis involving the forward kinematic and 
dynamic modeling of the system. Friction force between 
the piston and the cylinder that is the chief source of 
nonlinearity in hydraulic systems has been modeled in the 
latter study. Although, they considered the viscous friction 
and Coulomb friction, Stribeck effect [11] that imparts the 
well-known non-monotonic character to the variation of 
friction force and piston velocity was neglected.  

The design of a Stewart platform driven by variable-
speed DC motor actuated legs with ball-screw joint has 
been recently undertaken by Halder et al. [2]. Though most 
of the existing literature deals with either experiment or 
control design, very few of them deal with the design. A 
design procedure for an electro-hydraulically actuated 
Stewart platform driven has been reported here. The design 
has been accomplished by using the inverse kinematic and 
dynamic modeling of the system along with detailed 
electro-hydraulic model. While commercially available 
components like six sets of universal joints, spherical 
joints, hydraulic piston and cylinder arrangements and 
proportional valves along with a hydraulic power pack 
have been selected. 

It may be mentioned here that the existing body of 
research has grossly overlooked the design aspect of the 
problem. A simultaneous nested search has been executed 
in this study for given payload size and range of its 
demanded pose and the rates, along with the constraints of 
the permissible maximum joint angles and available 
actuation capabilities. The design has been accomplished 
by implementing the inverse kinematic and dynamic 
models in Matlab. 

II. System Configuration 

Figure 1 shows the schematic of a electro-hydraulically 
actuated Stewart platform with a fixed semi-regular 
hexagonal frame b1b2b3b4b5b6 on the ground and a circular 
disc t1t2t3t4t5t6 on top connected by six extensible legs. 
Each leg has a universal joint with the bottom frame, a 
spherical joint with the top disc and a hydraulic cylinder 
with a piston between these joints. While a universal joint 
is shown by a filled circle, an empty circle represents a 
spherical joint. Each cylinder has been shown to be 
asymmetric with the piston rod protruding out of it only at 
the top. Along with each cylinder, a corresponding four-

port proportional valve for controlling the piston motion 
has been represented in the figure symbolically. There is a 
common hydraulic power pack with a pump, a pressure-
relief valve and a reservoir, all represented by their usual 
symbols. Though the symbol of the reservoir has been 
used in several places, they stand for the same reservoir. 
An integer between 1 to 6, either at the subscript or the 
superscript, has been used for the different variables and 
the geometric descriptions pertaining to each of the six 
legs, which has also been described in the text in a general 
manner by using i instead of the integer. 

A universal joint i with center at Bi supports the cap-

end of the ith cylinder on the bottom frame through one 
arm biBi of the joint. The supply and return discharges  

through the ith valve are qsi and qri respectively, which 
could reach to one end of the cylinder and comes back 
from the other end. Not only these discharges, but also the 
pressures pti and pbi at the top and bottom chamber of the 
cylinder are controlled by the respective electrical 
command signal ei each valve. The difference of pressure 
within the cylinder across the piston causes the piston to 
reciprocate relative to the cylinder.  

In the system depicted in Figure 1, six DOF motion 
could be imparted to the top disc through the spherical 
joints with centers at Ti. The top platform is a circular disc 
supported on the universal joints at the points ti, where Titi 
is the top arm of the ith joint. The joints together comprise 
four semi-regular hexagons t1t2t3t4t5t6, T1T2T3T4T5T6, 
B1B2B3B4B5B6 and b1b2b3b4b5b6 with circum radii equal to 
rt , rT, rB or rb respectively. For the ease of analysis, the 
disc and a cylindrical payload that would be supported on 
it has been assumed to be coaxial and for the simplicity of 
the presentation only the rim of the top disc has been 
shown. Figure 2 that has been employed to describe the 
inverse modeling of the entire system shows the payload 
explicitly. 
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III.  INVERSE KINEMATIC MODELING 

Different coordinate systems used in this study for the 
6-DOF motion analysis of the payload are a stationary 
global Cartesian coordinate system (x, y, z) with its origin 
at O, a payload-fitted moving coordinate system (px(t), 
py(t), pz(t)) attached to the center of mass at p for the 
combined payload and the disc that moves in space and six 
rotating coordinate systems (Bix(t), Biy(t), Biz(t)) attached to 
the stationary points Bi. The origins of all these coordinate 
systems have been indicated in Figure 2. It depicts the 
payload and the disc along with their poses at neutral 
(0,0,0,0,0,0) and at another pose (x,y,z,0,0,θz). For both the 
poses, the leg configurations have also been indicated in 
the bottom part of the figure. In the top part only the disc 
and the payload have been shown along with different 
axes. Solid lines and dashed lines indicate the details of the 
arrangement respectively at the neutral and away from it. 
Chain-dashed lines have been used to mark the axes in the 
figure. Like Figure 1, the filled and empty circles represent 
the centers of the universal and the spherical joints 
respectively. Only the top of the disc and the axes of the 
piston-cylinder pairs have been shown. 

The displacements x, y and z are referred as surge (Su), 
sway (Sw) and heave (H) respectively, while the angular 
displacements θx, θy and θz are called roll (R), pitch (P) and 
yaw (Y) respectively that together has been referred as 
SuSwHRPY. It is customary to specify the three angular 
displacements in the said order. A look at Figure 2 would 
make it evident that if the payload executes the yawing 
motion once the payload axis and p reach their respective 
desired orientation and position away from the neutral, the 
disc would require to slip at some joint of each of the 
actuation system about a vertical axis. Otherwise, a large 
stress would develop in the system. In order to overcome 
this problem, at the top end of each actuation system, a 
spherical joint has been selected. 

For the clarity of the presentation, a pose of the 
payload has been shown in Figure 2 with positive surge, 
sway, heave and yaw, but no roll and pitch. The neutral 
position is achieved, when the axes of the cylinder and its 
end joints BiTi, biBi and tiTi respectively are collinear. This 
collinear setting and the departure from it in a position 
other than the neutral are apparent from the figure. With 
respect to the designation at the neutral, an additional / has 
been used to indicate various points and axes in the 
position away from the neutral. Only for the payload-fixed 
coordinate system, its dependence on time t has been 
explicitly mentioned. 

Along with the stationary global coordinate system 
with axes Ox, Oy and Oz, the payload-fixed moving 
coordinate system has been shown with axes px,  py and pz 
at the neutral pose and p/px(t), p/py(t), and p/pz(t) for the 
pose away from the neutral. While the fixed origins of the 
rotating coordinate system at Bi have been shown in both 
Figures 1 and 2, the directions along the cylinder axis Biz 

have been indicated only in Figure 1. Each of the ith 
cylinder could have a passive rotation about the axis Biz 
along with an active rotation in which the axis Biz rotates 
about a horizontal axis passing through Bi. While the 
active rotation contributes to the payload motion, by 
allowing the passive rotation the internal stresses of the 
actuation system is contained. The rotating coordinate 
system is chosen in a manner such that at any instant of 
time, the active motion of a piston remains fully contained 
in the plane BizBix. Obviously, the axes Bix and Biy are 
connected to the specific demand of the payload motion. 
Therefore, these have not been explicitly shown in the 
figures.  

An objective of the inverse kinematic modeling is to 
express the instantaneous variations of the stroke of the 
pistons in terms of the instantaneous variation of the 
desired pose. These can be determined through the 
pertinent expressions for coordinates of the end points Bi 
and Ti of each leg. Thus, it is necessary to represent the 
variables related to the pose for different points associated 
with the legs. In terms of the scalar components indicated 
by the italicized variables, the bold-faced symbols that 
have been used for the different vectors are 

Tzyx )(x =                                                               (1a) 
T

zyx vvv )(=v                                                          (1b) 

T
zyx aaa )(=a                                                         (1c) 

T
ppp zyx )( θθθ=θ                                                   (1d) 

T
ppp zyx )( ωωω=ω                                                 (1e) 

T
ppp zyx )( ααα=α                                                  (1f) 

for the linear displacement, velocity and acceleration and 
the angular displacement, velocity and acceleration of the 
payload respectively with the subscript to scalar 
components indicating the coordinate direction. In the 
customary manner, the linear and angular variables for the 
platform have been represented in the stationary and the 
payload-fixed coordinate systems respectively. 

It is evident that the payload displacement has been 
taken to be equal to the displacement of the mass center p. 
With respect to this displacement, each of the positions of 
p, q and o has the additional component of the 
corresponding vertical height at the neutral above or below 
O. Using a subscript inside parentheses to indicate a 
variable at a point, therefore, it may be written that 

kzzjyix pp
ˆ)(ˆˆ 0

)()( +++=x                                                    (2a) 

kzzjyix qq
ˆ)(ˆˆ 0

)()( +++=x                                                    (2b) 

kzzjyix QQ
ˆ)(ˆˆ 0

)()( +++=x                                                    (2c) 

where the superscript 0 indicates the variable at the 
neutral position. It is apparent from the figure that the 
bottom ends of the actuators at B1, B2, B3, B4, B5 and B6 are 
fixed in space, while the top ends at T1, T2, T3, T4, T5 and 
T6 move with the payload. Though the figure shows only 
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the radius rt of the circle through all ti from the center q 
that is independent of the platform pose, radius rT of the 
circle through all Ti from the center at Q is also 
independent of the platform pose. Since bi and Bi do not 
move, the radius rB of the circle through all Bi from the 
center at O and the radius rb of the circle through all bi 
from the center at o are also fixed. Clearly, the coordinates 
of Bi, bi, ti and Ti are 

T
BiBBiBBi rr )0sincos( )()()( θθ=x                                (3a) 

T
bibiBbibbi zrr )sincos( )()()()( θθ=x                             (3b) 

)(),()()( qtiqti Orxx +=                                                      (3c) 

)(),()()( QTiQTi Orxx +=                                                    (3d) 

where the symbol r c(a), (b)
  represents the position vector 

of a with respect to b in the coordinate system with origin 
at c yielding 

T
pqtittit

T
opqti zzrr )sincos( 0

)(
0

)()()(,)(),( −= θθRrO
             (3e) 

T
pQTiTTiT

T
opQTi zzrr )sincos( 0

)(
0

)()()(,)(),( −= θθRrO
        (3f) 

with various angles appearing in Equations (3a), (3b), 
(3e) and (3f) can be expressed in terms of the angle θs 
shown in Figure 2 as 

st θθ −=)1(
,

st θθ =)2(
, 3/2)2,()( πθθ += −itti

, 6  to3=i              (4a) 

)3/()1( πθθ −= sb
,

sb θπθ −= )3/()2( , 3/2)2,()( πθθ += −ibbi
,   

6  to3=i                                                                            (4b) 

6  to1,/)( 0
)(

0
)()()()()( =−+= izz qQtibitiTi    θθθθ                         (4c) 

6  to1,/)( 0
)()(

0
)()()()( =−−= izz qOtibibiBi    θθθθ                        (4d) 

and in Equations (3e) and (3f), the rotation matrix for 
transforming a vector from the moving to stationary 
coordinate system is 

TT
p

T
p

T
pop )(, xxx kjiR =                                                  (5a) 

where
)sscscsccsscc( zxzyxzxzyxzy

T
p θθθθθθθθθθθθ +−+=xi  (5b) 

)cssscccssssc( zxzyxzxzyxzy
T
p θθθθθθθθθθθθ +−+−−=xj (5c) 

)cccss( yxyxy
T
p θθθθθ −=xk                                       (5d) 

Where 
αα cosc =  and αα sins =                                                                    

The fixed lengths of the top arm of the ith spherical 
joint, the bottom stubs and the bottom arm of the ith 
universal joint, the instantaneous length of the ith leg along 
with the angles between the two arms in the top and 
bottom joints cab be expressed respectively as 

)()( xx TitiTil −=                                                                 (6a) 

)()( biBiBil xx −=                                                               (6b) 

)()( BiTiail xx −=                                                                (6c) 

)ˆ.ˆ(cos 1
BitTiTi ke−=α                                                           (6d)          

)ˆ.ˆ(cos 1
BiBbiBi ke−=α                                                         (6e) 

Where 
 

)()()()( /)(ê TitiTititTi xxxx −−=                                            (6f)   

)()()()( /)(ê biBibiBiBbi xxxx −−=                                         (6g) 

and in Equations (6d) and (6e) Bik̂  belongs to the unit 

vector set in ith rotating coordinate system expressed as 

T
oBi

T
BiBiBiBi kjikji )ˆˆˆ()ˆˆˆ(ˆ ,Re ==                   (7a) 

where (a) the unit vector  along Biz direction given by 

ekxx/xx xˆˆˆˆ)(ˆ T
BiBizBiyBixBiTiBiTiBi kkjkikk =++=−−=          (7b) 

(b) the unit vector along Biy direction in case the 
payload is in motion or stationary given respectively by 

ejvxx/vxx xˆˆˆˆ)()(ˆ T
BiBizBiyBixTiBiTiTiBiTiBi kjjjijj =++=×−×−= (7c) 

or  

ejvr/vr xˆˆˆˆˆ
,,

T
BiBizBiyBixTiBiTiTiBiTiBi kjjjijj =++=××=          (7d) 

and (c) the unit vector  along Bix direction written as 

ei xˆˆˆˆˆˆˆ T
BiBizBiyBixBiBiBi kijiiikji =++=×=                                 (7e) 

with the rotational matrix for transforming a vector 
from the ith rotating to stationary coordinate system given 
as 

TT
Bi

T
Bi

T
BioBi )(, xxx kjiR =                                                (7f) 

where  

)( BixBiyBiyBixBizBixBixBizBiyBizBizBiy
T
Bi kjkjkjkjkjkj −−−=xi                

(7g) 














∆−∆−∆−
=

jBiTixBiTi

TiyBiTi

jBiTizBiTi

TixBiTi

jBiTiyBiTi

TizBiTiT
Bi vy

vx

vx

vz

vz

vy

/)

(

/)

(

/)

(

)()(),(

)()(),(

)()(),(

)()(),(

)()(),(

)()(),(
xj

 (7h) 
 )/)(/)(/)(( )()()()()()( aiBiTiaiBiTiaiBiTi

T
Bi lzzlyylxx −−−=xk     (7i) 

+−+−=∆ 2
)()(),()()(),(

2
)()(),()()(),( )()[( TizBiTiTixBiTiTiyBiTiTizBiTijBi vxvzvzvy

 
2/12

)()(),()()(),( ])( TixBiTiTiyBiTi vyvx −                                         (7j) 

There are physical constraints on the angles estimated 
by Equations (6d) and (6e), since the angle between the 
axes of two arms in relative motion in a joint should be 
within a limit depending on its design. Moreover, for each 
piston there is a permissible maximum stroke between the 
heads of the corresponding cylinder. Therefore, the length 
of the legs should be calculated from Equation (6c) for 
different poses within the specified range. The difference 
between the maximum and the minimum lengths thus 
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obtained should be restricted within the permissible stroke 
for the cylinder to be selected.  

Besides the permissible joint angles and piston strokes, 
the kinematic analysis should also provide the estimate of 
the maximum total discharge necessary to feed all the 
cylinders. The motion simulators are meant to generate 
different kinds of motion within a small workspace and 
study its implication on the payload with high inertia. 
Therefore, the payload should be excited for any basic 
motion among SuSwHRPY or a complex motion that 
combines the basic motions, though roll, pitch and yaw 
imparted in order. Corresponding to any desired velocity 
of the platform center of mass and the angular velocity of 
the platform, the velocity of Points Ti can then be obtained 
in the stationary coordinate system as 

})(),(
)(

)(,)( pTi
p

p
T

opTi ppO rω{vRv ×+=                             (9a) 

which can be expressed in the corresponding rotating 
frame as 

)(
1

,)( )( Ti
T

oBiTii OB v Rv −=                                              (9b) 

from which the velocity of the ith piston along its axis 
can be found out as 

BiTiipi kv ˆ.)(Bv=                                                           (9c) 

yielding the discharges at the top and bottom chambers 
of each cylinder with flow areas At and Ab respectively as 

pitti vAq =                                                                   (9d) 

pibbi vAq =                                                                  (9e) 

The discharges in Equations (9d) and (9e) have been 
taken as positive and negative respectively for the piston 
extension and retraction. 

Considering the pump and reservoir pressures to be pp 
and pr respectively, a reasonable flow model for most of 
the commercially available proportional valves [12] has 
been proposed here with reference to Figure 1 as 

||)sgn(}0),sgn(max0,max{ 0 bipbipilivpib ppppeceecvA −−><+>−<=  
×><+>+<+−−><− }0),sgn(min0,min{||)sgn(0),sgn(max 0 ilivrbirbiil eceecppppec

||)sgn(0),sgn(min||)sgn( bipbipilrbirbi ppppecpppp −−><−−−  
(10a) 
and 

||)sgn(}0),sgn(max0,max{ 0 rtirtiilivpit ppppeceecvA −−><+>−<=  
×><+>+<+−−><− }0),sgn(min0,min{||)sgn(0),sgn(max 0 ilivtiptipil eceecppppec

||)sgn(0),sgn(min||)sgn( rtirtiiltiptip ppppecpppp −−><−−−  
(10b) 

where cv and cl are the valve and leakage coefficients, 
ei is the command signal to the ith valve, e0 is the value of a 

threshold signal and, for ease of appreciation of the use of 
max and min functions, Figure 1 may be taken up for 
further discussion, considering the pump and return ports 
to be metered and the other two ports for communicating 
the flow between the valve and the cylinder to be 
unmetered. 

At the metered ports, the discharges from the pump and 
to the reservoir have been indicated in Figure 1 as qsi and 
qri. The metered ports open or close in pair depending on 
the command signal, whereas the unmetered ports always 
remain wide open. Other conditions remaining unchanged, 
the flow increase in the metered ports is proportional to the 
increase in the magnitude of the command signal beyond 
the threshold. The direction of flow in the unmetered ports 
depends on the sign of the command signal. In order to 
simulate this direction, the max and min functions have 
been used in the above two equations. The flow 
connectivity through these ports has been shown 
corresponding to the valve at the neutral position and the 
command-signal dependent swapping of flow directions 
have been indicated by the two blocks on either side of the 
neutral block. 

The neutral position of the valve is an approximate 
representation of the system for command signal between 
the thresholds of ± e0. Within this range of excitation, the 
flow through the valve is constituted essentially by leakage 
at each metered port, each of which has two parts. As the 
piston head divides the cylinder volume in two chambers, 
the central land of the spool divides the spool in two 
chambers each extending up to the corresponding end 
lands. A spool rod connects the three lands providing 
identical displacement to each by the command signal. At 
the neutral, the lands completely block the metered ports 
and the spool movement away from the neutral controls 
the opening and closing of the metered ports. If the pump 
flow is metered by the central land by simultaneous 
covering and uncovering of the port on either side of the 
land, each end land meters a part of the return ports that 
are internally connected together within the valve body. In 
each chamber on either side of the central land, there is 
also an unmetered port for communicating the main flow 
with the cylinder. 

Beyond the threshold, the increase in the main flow 
takes place through one part of the pump port and one part 
of the return port that belong to the opposite chambers. 
With reversal of sign in the command signal, the parts of 
the ports with augmented discharge get swapped with 
respect to the central land. Thus, whether the flow reaches 
the bottom or top chamber of the cylinder and comes out 
from the opposite chamber gets decided causing extension 
or retraction of the piston respectively. The swapping of 
the main flow paths have been captured by the max and 
min functions in Equations (10a) and (10b). These 
equations have been written for a valve with matched and 
symmetric ports, implying the pump and return ports 
always opening or closing together in pair by the same 
amount. The flow model proposed here is more 
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comprehensive than the one employed in the earlier studies 
[9, 10]. It is apparent from the above discussion that for 
positive command signal beyond e0, the discharge qsi that 
enters a valve chamber from the pump line can be 
expressed as  

tiplbiplivsi ppcppceecq −+−+−= })({ 0
                (10c) 

out of which the leakage discharge 

)( tipbipll ppppcq −+−=                                     (10d) 

returns to the reservoir. Of course, prior to flowing 
through the return port, the latter part of the leakage is 
joined by the discharge Atvpi coming from the top chamber 
of the cylinder. Equations (10c) and (10d) are useful for 
estimating the coefficients from the given characteristics of 
a valve.  

The inverse kinematic solution of the piston velocities 
along with Equations (10a) and (10b) provide a system of 
twelve equations for eighteen unknowns of cylinder 
pressures and valve command signals. In order to make the 
system fully deterministic, the inverse dynamic modeling 
of the system needs to be integrated. 

 

IV.  INVERSE DYNAMIC MODELING 

The pressure force ci
BizF  developed in the ith cylinder 

along Biz direction by pressurized oil overcoming the 
friction force Ffi and the piston inertia due to the piston 
mass mp and acceleration api can be expressed as 

pipfititbibi
ci
B

amFpApAF iz −−−=                                   (11) 

The cylinder friction is a major source of friction and 
the system nonlinearity in hydraulic systems. Das et al. 
[11] developed an easy-to-use model for its complex 
behavior as shown in fig 3.  

All the forces obtained from Equation (11) can be 
expressed together for later convenience as 

Tc
B

c
B

c
B

c
B

c
B

c
B zzzzzzz FFFFFF )( 654321

654321=c
B

F     (12) 

These forces together support the weight of all the 
pistons, top joints, disc and payload along with 
overcoming the inertia of the payload, the disc and the 
legs. By the choice of the coordinate system, the rotational 
inertia force ci

BixF of the ith cylinder and piston acts along 

Bix direction. This force for the ith leg is made of the inertia 
force on each of the components due to a linear variation 
of the angular acceleration. Assuming symmetric mass 
distribution about the principal axes in each component, 
this force can be calculated as equal to the inertia due to a 

lumped mass at the mid-point of the axial extent. 
Therefore, combining the transverse inertia forces in the 
rotating top arm of the universal joint, the cylinder, the 
piston and the bottom arm of the spherical joint with 
lengths lu, lc, lp and ls respectively and masses mu, mc, mp 
and ms respectively, it can be written that 

)2/()]2()22()([
)( aiTiBsaispsaipcucuu

ci
B
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where 
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Yet again for later convenience, the forces obtained 
through Equations (13a) to (13d) for all the legs together 
are expressed as 
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Now, representing the third column of the 
transformation matrix in Equation (5a) as 

T
yxzxzyxzxzyxop )cccssscsscsc(, θθθθθθθθθθθθ +−+−=k

                                                                                       (15a) 

and introducing the compact notations as  

×= T
opp ,)(),( Rr T

)
)(),6()(),5()(),4()(),3()(),2()(),1( pTppTppTppTppTppTp xxxxxx rrrrr(r

                                                                                     (15b) 
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Fig.  2.     Typical variation of friction force with piston velocity in 
a hydraulic cylinder 
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with(:,i) in Equation (16c) representing the ith column 
of a matrix and I(p) in Equation (16d) representing the mass 
moment of the moving platform and payload together, the 
forces on the moving platform imparted through the top 
joints can be related to linear and angular accelerations of 
the platform as 
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Equations (16a) and (16b) can be solved together for 
the six unknowns represented by the right-hand side of 
Equation (12) with the forces in Equation (14) obtained for 
any choice of the motion profile of the payload that also 
defines the right-hand side vector in Equations (16a) and 
(16b). Equations (10a), (10b) and (11) can then be solved 
together at any instant of time to obtain the cylinder 
pressures and the command signal. Thus the inverse 
kinematic and dynamic models can be employed together 
for designing the system. 

V. DESIGN THROUGH NUMERICAL SIMULATION  

In order to accomplish the design analysis, the 
formulation presented above has been implemented in 
Matlab-Simulink framework. Prior to the implementation, 
the valve and leakage coefficients of the proportional 
valves need to be ascertained from the known 
characteristics of available commercial valves. Along with 
the characteristics, any such valve has specifications for 
the maximum discharge and the maximum leakage 
expressed as p% of the maximum discharge. From 
Equations (10c) and (10d) with equal pressure drop ∆p in 
each metered port, it can thus be written that 

)2200/()( 0max peepcc vl −−=  that along with Equation (10c) 

provides 

)2200/(}2/)({2/)}2200/()({ 0max0max0 ppceeppcpeepeeq vvvvisi −∆−+∆−−+−=
                                                                                         (17) 

where ∆pv is the total pressure drop in the two metered 
ports. 

VI.  RESULTS 

Theoretical result of the mathematical model described 
is prepared using a programming in MATLAB under the 
following specifications of the geometric and dynamic 
parameters of the model. 
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0
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Arm length of each joint (top and bottom) =
iiii BbTt =

=0.1m 
Mass of pay load(mpay) = 250kg, radius of pay 

load(rpay)=0.15m, density( )( payρ  =7900kg/m3 

Mass of steel plate +Mass of hexagonal 
frame=60kg+30kg=90kg. 
Maximum displacement from neutral position along x 
direction (surge motion) =0.05mx〉   

Maximum displacement from neutral position along y 
direction (sway motion) = 0.05my〉  

Maximum displacement from neutral position along z 
direction (heave motion) =0.15mz〉  

Maximum linear velocity (vmax) =0.3m/s, Linear 
acceleration/retardation (a) =3m/s2. 

Maximum angular velocity ( maxω ) = s/200 , Angular 

acceleration/retardation )(α = 20 /200 s  

A required table movement is given in such a way that 
initially accelerated up to the maximum velocity then at 
constant velocity vmax then retarded to rest at the final 
position based on the above specification force 
requirement on each actuator for different table movement 
is found out as shown in fig 5a & 5b. Analyzing the above 
force variation for different table movements, lower series 
of cylinder piston assembly from Bosch Rexroth catalog is 
selected   

Cylinder diameter = 0.025m and Piston diameter = 
0.012m.Maximum pressure (Ps) generated by the pump is 
selected as 50bar. Considering loss of flow rate in % (p) 
=20. Block diagram of the hydraulic circuit is shown in fig 
1. 

Calculation of CV 

Arbitrarily sample points are chosen from the 

characteristic curve as shown in Fig (4a) of the DCV 

 
Fig.  4(a)    DCV characteristic curve 
Fig   4(b)   Error variation with valve coefficient 
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Fig.  5(b)  Variation of actuator position, force required at the actuators 
along the actuators, flow rate supplied at the top & bottom chamber, 
pressure required at the top & bottom chamber & voltage required to 
control the opening of the valve during the motion with respect to time 
is plotted for roll, pitch & yaw motion.  
 

Fig.  5(a)    Variation of actuator position, force required at the 
actuators along the actuators, flow rate supplied at the top & bottom 
chamber, pressure required at the top & bottom chamber & voltage 
required to control the opening of the valve during the motion with 
respect to time is plotted for heave, sway & surge motion.  
 

which are tabulated in a table for different pressure & % 
opening in terms of voltage, flow rates in lt/min  are 
extracted. From these data a rough calculation suggests 
that average value of Cv should be in the range between 0.1 
& 0.35. For each of these Cv flow rate is calculated using 
the equation (10). After that an error parameter 

2)( calculatedgraph QQe −=∑ is calculated for each Cv and least 

value of error corresponding to Cv=0.27 is taken as the 
valve coefficient. Variation of error with Cv is shown in 
Fig (4b).  

Now solving equations 10a, 10b, 14 and 11 for 
different types of specified motion flow rate  variation into 
the actuator(positive) or coming out from the 
actuator(negative), pressure variation in top and bottom 
chamber of each actuator and the instantaneous valve 
openings are plotted with time in fig5a & fig5b.  

It can be concluded for the above mentioned basic 

motions maximum flow that the pump is required to 
supply is 49.91 lt/min during heave motion. 
 

VII.  CONCLUSIONS 

A simple discharge model for commercial valves has 
been proposed and the methodology for determining its 
various coefficients has been demonstrated. The usefulness 
of a simple friction model developed by Das et al. [11] has 
been clearly brought out in designing a system as complex 
as a Stewart platform. In fact the complete methodology 
provided for designing such a system prior to designing the 
controls is a notable contribution of the present study. The 
inverse models for the system kinematics and dynamics 
have been used in Matlab for accomplishing the design. 
The margins left in the valve command signals need to be 
tested for the control analysis as one described by Halder 
et al. [2]. 
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