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Abstract—The ever increasing demands on accuracy and
faster response pose control challenges that are difficult to
realize. Though advanced robust controllers can help address
such demands to some extent, in reality actuator saturations
and control limits can cause stabilized or sustained oscillations.
In such scenarios, feed-forward methods and in particular
input shaping (IS) seem to offer a valuable and cost-effective
way for suppressing the residual vibrations [1] without major
modifications to an existing system. Such schemes are found to
be successful for a variety of (simple to complex) applications
in flexible manipulators, gantry cranes etc [2], [3]. In this work,
our focus is on the extending the traditional IS methods to con-
strained articulated multi-body systems (AMBS), specifically,
for parallel manipulators (PMs) having revolute actuators. We
present analytical formulation of linearized dynamic equations
for a 5 bar (or 2-RR) and numerical computation of dominant
mode frequency and eigenvalues of these systems. Dynamic
simulation and IS control of the planar PM were subsequently
carried out for simple point-to-point trajectory tracking prob-
lems. The corresponding results for shaped and unshaped
inputs indicate considerable improvement in suppression of
residual vibrations and were evaluated using reduction of
maximum overshoot in position and torque inputs, settling time
and percent residual energy as performance measures.

Keywords – parallel manipulators, input shaping, dynamic
analysis, percent residual energy

I. INTRODUCTION

The ever increasing demands on accuracy and faster
response pose control challenges that are difficult to realize.
Though advanced robust controllers can help address such
demands to some extent, in reality actuator saturations and
control limits can cause stabilized or sustained oscillations.
The parasitic flexibilities, nonlinearities and multi-modal
behaviors exhibited by a system present additional chal-
lenges for high precision applications. In such scenarios,
feed-forward methods and in particular, one of the classical
methods called input shaping (IS) [1] seem to offer a
valuable and cost-effective way for suppressing the residual
vibrations without major modifications to an existing system.
This method relies on designing convolved inputs with

a chain of impulses with time-delays. Such schemes are
found to be successful for a variety of (simple to complex)
applications in flexible manipulators, gantry cranes etc [2],
[3]. In this work, the focus is therefore on the applicability
of IS methods to constrained articulated multi-body systems
(AMBS), specifically, planar parallel manipulators (PMs)
having revolute actuators.

II. LITERATURE REVIEW

Singer and Seering [2] presented a simple, effective
method that is now known as Impulse Input Shaping,
which introduces a small time delay in a shaped reference
trajectory. In short, the principle of input design, or input
shaping, is to prevent the excitation of badly damped poles
of a system by eliminating energy in the input signal at the
specific frequencies corresponding to those poles. Impulse
Input shaping produces zero residual vibration (as defined
in [4], [5]) by creating a set of impulses with appropriate
timing and amplitude, and convolving these impulses with
the original reference trajectory. This effectively leads to the
filtering of the specific frequencies from the input signal.
The convolution of an impulse sequence with a reference
trajectory in general shapes the entire trajectory for minimal
residual vibration, which is not necessary for point to point
motion.

Input shaping is basically employed for linear time
invariant systems. It is beneficial especially when control
performance requirements are not properly met in typical
feedback control as well as open loop systems [6]. This
can occur for various reasons including due to discrepancies
between the simulated model and the actual system and due
to contrasting design requirements indirectly imposed by
limitations on actuators and controllers. In certain scenarios,
robust shapers can be designed which can perform in pres-
ence of variations or uncertainties in the system parameters
like natural frequencies. However, employing such a method
for PM type nonlinear systems requires linearization of
dynamic models.

So far, only a very few have succeeded in applying
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IS method to suppress residual vibrations for trajectory
tracking problems using PMs. Kozak et al [3] discuss a
basic application of input shaping techniques for 2 DOF
manipulators while the same had been applied for 3 DOF
flexible linkage system in [7]. However, both these systems
have prismatic actuators as active joints which simplify the
kinematic and eventually dynamic models of the system
compared to revolute actuators which is dealt in this paper.

III. MATH BACKGROUND

A. Parallel Platform Manipulator Kinematics

In order to solve the systems of dynamic equations of
motions (EoMs), it is first necessary to derive the system
level position and velocity kinematic equations [8]. For a
generic multi-link parallel platform manipulators (PPM), a
PM having multiple serial chains attach at various points of
a central platform, as in Fig. 1, the position of the central
platform is of interest (task space control variable). In the
Cartesian space, the platform position can be expressed using
vector loop closure technique for a jth chain as follows:

Hj (q) = OAj
0 + Aj

0A
j
1 + Aj

1A
j
2 + . . .Aj

nj−1A
j
nj

= OX
(1)

where, nj is number of links in jth chain (in this work, nj =

n, ∀j = 1 . . .m chains, and
(
Aj
k

)
k=1...n−1

are end points

(or joint centers) of links and Aj
n are platform attachment

points for jth chain. Eqn.(1) is a nonlinear vector algebraic
equation that are usually difficult to solve analytically.

Fig. 1: Multi Chain Parallel Mechanism

For inverse kinematics it has to be solved for the joint or
configuration coordinates, {q ≡

[
qa

Tqp
T
]T ∈ RN , where

qa
T ∈ RÑ are the actuated joint coordinates, qp

T ∈ RN ′

are the passive joint coordinates and Ñ + N ′ = N is the

dimension of total joint space}, given the Cartesian position
and orientation of the central link/ platform, X ∈ RM . For
the case of PPMs, several nonlinear analytical formulations
exist such as Freudenstein’s or intersection of circles and
a detailed survey of these methods can be found in [8].
On the contrary, given the complete joint configuration
of such systems (LHS of eqn.(1)), forward kinematics to
determine the platform configuration (RHS of eqn.(1)) is
straightforward, even for spatial complex systems, provided
complete configuration (both passive and active joint angles)
is known or can be computed. It is noted that depending
upon the values of N, Ñ,N ′ and M , any AMBS system can
be categorized into under-actuated (Ñ < M), kinematically
redundant (N > M ), fully-actuated (Ñ = M ) and redun-
dantly actuated systems (Ñ > M ). In this work, however, we
will only focus on fully actuated PPMs for which Ñ = M .

Differentiating eqn.(1) w.r.t. time (t) yields the velocity
level kinematic equations for each chain which in turn can be
simplified further to obtain the respective link and platform
Jacobian matrices.

V̇x =
∂Hj (q)

∂q
q̇ = Jjpq̇ (2)

where, H ≡
[
Hj
]
j=1...m

, V̇x ∈ RM ≡ platform end
effector velocity and Jjp ∈ RM×N ≡ link Jacobian matrices
for each chain. The link Jacobian matrix, Jjp linearly relates
the end effector velocity, V̇x to joint rates q̇ and the platform
Jacobian matrix (Jp ∈ RM×Ñ ) can be obtained can be
obtained by collecting the rows of Jjp corresponding to the
actuated joint rates, q̇a.

B. Constraint Velocity Matrix

In this work, we intend to use augmented Lagrangian
method (ALM) as in eqn.(5) to derive the final EoMs in
terms of extended joint coordinates. This is achieved by
splitting up the complete PPM as in Fig.1 into individual
chains except for one chain (say for the chain, j = 1)
to which the central platform is included as the end link.
So, the EoMs of the PPM having M degrees of freedom
(DOF) in task-space will be parameterized using the entire
joint coordinates (assuming all joints to be 1-DOF except
platform attachment joint) having a total of n ×m + m̃ or
N + m̃ DOF, i.e. (n DOF joints per chain ×m chains +m̃
DOF to account for the joint attachment between central
platform to the penultimate link of the 1st chain, and total
joint coordinates, N = n.m). So, by this approach we end
up with (N +m̃) number of EoMs, requiring (N +m̃)−M
independent constraint velocity equations for ALM. The
total joint coordinate vector, q will now be extended using
the additional m̃ DOF, i.e. q ∈ RN+m̃. For example, a
2 − RR mechanism as in Fig.3 has n = 2 links per chain,
m = 2 chains, M = 2 (xe, ye). Therefore, number of
constraint equations, assuming all joints to be 1 DOF and
the central platform to be a point mass attached to the end of
the 1st chain (which does not contribute to any additional
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DOFs, i.e. m̃ = 0), will be: N + 0 − M = 4 − 2 = 2,
thereby requiring us to find two velocity level constraints
from vector loop closure equations. These position-level-
constraint equations are iteratively obtained from Eqn.(1)
for two successive chains as follows, which provided us a
simpler way of obtaining the desired number of constraints
eliminating the task space variables (X) altogether:

Cj(q) = Hj+1 −Hj = 0

⇒ C (q) =
[
Cj(q)

]m−1

j=1
= 0 (3)

Eqn.(3) is only one scheme of generating independent con-
straint equations and there are usually numerous ways to
find required number of constraint equations as long as all
of those are independent with each other.

Differentiating eqn.(3) w.r.t. t yields the velocity level
constraint equation as:

∂C (q)

∂q

∂q

∂t
= 0⇒ B (q) =

∂C (q)

∂q
⇒ B (q)

∂q

∂t
= 0 (4)

where B (q) ∈ R(N−M)×N will be used in Lagrangian
EoMs as explained in the next section.

C. Constrained Lagrangian Formulation for Parallel Ma-
nipulators

With positions and velocities of mass centers of all the
links expressed in terms of joint coordinates q and the
corresponding rates q̇, individual kinetic (T) and potential
(V) energies and eventually, system Lagrangian (L) can
be readily calculated as L = T−V. Using the system
Lagrangian, L, the final EoMs can be obtained using ALM
as:

d

dt

∂L

∂q̇i
− ∂L

∂qi

∂Π

∂q̇i
− ∂∆

∂q̇i
−

(N+m̃)−M∑
k=1

∂Ck

∂qi
λk,

∀i = 1 . . . (N + m̃) (5)

where Ck is the kth row of equation from eqn.(3), Π and
∆ are sum of all external inputs and dissipation elements
of the system respectively and λ = (λk)k=1...(N+m̃−M). A
detailed discussion on this method can be found in [8].

Simplifying eqn. (5) and combining the joint rates and
accelerations terms together, the final dynamic equations of
motion (EoM) for a typical PPM in Fig. 1 takes the form of
2nd-order differential algebraic equations as:

M (q, q̇) q̈ + N (q, q̇) + G (q) = τ −BTλ

B(q) = ∂C(q)
∂q (6)

where mass matrix (M), centrifugal and Coriolis vector (N),
gravitational vector (G) and input torques (τ ) are used. The
corresponding derived matrices for 2 − RR manipulator is
given in the appendix A in eqns. (14) and (17).

The feedback loop is implemented to simulate sim-
ple point-to-point trajectory tracking problems. A simple

proportional derivative (PD) control is considered in this
work for which the control torques can be computed as
τ = KP(qdes − qcurr) + KD(q̇des − q̇curr). KP and
KD are typically diagonal matrices with values representing
control gains in joint-space, i.e. KP = diag

(
[kp,i]

n
i=1

)
and

KD = diag
(
[kd,i]

n
i=1

)
. qdes and qcurr represent the desired

and current joint trajectories. For the sake of implementation
of IS control, the control gains need to be tuned to be
able to generate stable or conditionally stable tracking of
trajectories.

D. Frequency and damping ratio distribution

Studying the frequency characteristics of nonlinear sys-
tems and determining the poles for such systems are ex-
tremely difficult, if not impossible. It is therefore neces-
sary to linearize the dynamic model in eqn.(6) about the
equilibrium point, q0 of the configuration space, assuming
negligible joint velocities and neglecting non-linear terms,
N (q, q̇), to get:

M̃ (q0) ∆q̈ + C̃∆q̇ + K̃∆q + B̃T (q0) λ̃ = 0 (7)

Diff. eqn.(4) and linearizing about q0, we get:

B̃ (q0) ∆q̈ + ˙̃B (q0) ∆q̇ = 0

B̃ (q0) ∆q̈ = − ˙̃B (q0) ∆q̇ (8)

where, ∆q, ∆q̇ and ∆q̈ are finite differences and their
derivatives between the operating point and the actual point;
K̃ = diag

(
[kp,i]

n
i=1

)
= KP and C̃ = diag

(
[kd,i]

n
i=1

)
=

KD. M̃ is the linearized mass matrix = M|q=q0 . Combin-
ing eqns. (7) and (8), we get:{

M̃ 0
0 0

}
︸ ︷︷ ︸

Ms

{
∆q̈

∆λ̈

}
︸ ︷︷ ︸

∆p̈

+

{
C̃ 0
0 0

}
︸ ︷︷ ︸

Cs

{
∆q̇

∆λ̇

}
︸ ︷︷ ︸

∆ṗ

+ . . .

{
K̃ −B̃T

B̃ 0

}
︸ ︷︷ ︸

Ks

{
∆q

∆λ̃

}
= 0︸ ︷︷ ︸

∆p

(9)

As it can be seen in eqns. (7) and (9), the linearized
model becomes a multi-pole second order system using
which the natural frequencies and damping ratios of the
system could be determined. This is done by using the
characteristic equation (CE) obtained by taking the Laplace
transform of eqn.(9) as:

M̃ss
2 + C̃ss+ K̃s = 0 (10)

The corresponding poles of eqn.(10) is used to obtain natural
frequency and damping ratio to design our input shapers.
Depending on the extent of nonlinearity of the system, these
quantities tend to vary widely within the desirable work
volume.

802



Fig. 2: Multi-Mode Standard Time Delay Input Shaper
Control [6]

E. Input Shaper (IS) Design

IS are generally characterized by their step or impulse
amplitudes (Ai) and their corresponding time-delays (Ti).
Analytical expressions of standard IS parameters for a
second order system have been derived in [2] (based on
natural frequency, ωi and damping ratios, ζi of ith dom-
inant pole of a typical multi-pole linear system). Safely
assuming the linearity of the system, these values can be
obtained from the location of the respective dominant pole
(αi ± jβi, where j =

√
−1). The derived parameters for a

standard 2-step input shaper (A1, A2, t1, t2) for ith pole
(αi ± jβi ≡ ζiωi ± ωi

√
1− ζ2

i ) are given by:

K = e
− ζiπ√

1−ζ2
i

T0 = 0, T1 = ζiπ√
1−ζ2i

(11)

A0 = K
1+K , A1 = 1

1+K

In order to ensure the output is consistent with the input
magnitude, the amplitudes, Aij , for i − th pole in eqn.(12)
are normalized to one (

∑
j A

i
j = 1, Aij ≥ 0,∀j). A general

multi-pole multi-step input shaper cascaded with a 2nd
order dynamic system is represented in block form in Fig.2
by principle of linear superposition of IS. For multi-pole
systems, the IS parameters are determined for each dominant
pole and cascaded in series to progressively split a single
step input into sequence of smaller step inputs and feed into
the system as in Fig. 2.

IV. SYSTEM DEFINITION

In this work, we consider the simplest fully-actuated
symmetric PPM, namely 2 − RR manipulator (or a five
bar mechanism with central point mass located at the point
where the end effectors of both the arms meet) as shown
in the Fig. 3 for which Ñ = M . The Rs in the names
of the PPM stand for the revolute joints (in general, P
stands for prismatic, C for cylindrical, U- universal and
S for spherical joints) in each arm of the manipulator,
while the underline indicates the actuated joints. The word
symmetric here implies that not only the number of links
in each chain but also the joint arrangements for each chain
of the PPM are same. In addition, the PPMs are assumed
to operate in a horizontal plane so that the effects due
to gravitational forces including the term, G (q) shall be
neglected hereafter from eqn.(6). However, it is noted that
the method can be generalized to any type of systems that
violate these assumptions (including out-of-plane or spatial

Fig. 3: 2- RR Parallel Manipulators (split at E): Ii,1 = 0.04,
Ii,2 = 0.12, Ip = 0.082, mi,j = 0.1, mp = 0.5, b1x = 1

robots and redundant manipulators) as long as the underlying
kinematic equations are solvable. Such complex systems will
be considered as a part of our future efforts.

The schematic of the system is shown in the Fig. 3
using the values of the geometric and dynamic parameters
as listed in Table.I for our simulations. The resulting for-
ward dynamic models of the 2- RR manipulator and the
control implementations were carried out within MATLAB-
Simulink using a fixed step solver (ode3) and a step size
of 0.0001 seconds as shown in the Fig.4. It comprises of
a feedback PD controller with proportional and differential
gain matrices, KP and KD respectively encapsulated within
input control block. Using eqn.(10), the distributions of ωi
and ζi corresponding to the dominant pole(s) were deter-
mined to design our IS as per the eqns.(12). The distributions
of natural frequencies and damping ratios for the linearized
dynamic model of 2−RR system corresponding to the dom-
inant pole are shown in Fig. 5. The variations in damping
ratios are similar (while magnitudes are different however)
to the corresponding natural frequencies and hence, only the
frequency plots are shown here.

V. RRESULTS

A. Unshaped Response

Prior to proceeding with IS design, it is necessary to
guarantee the stability (or at the least, conditional stability)
of the dynamic system with or without a feedback control
(in our case, we chose PD control) for trajectory tracking.
The IS enables one to only modulate the control inputs and
does not affect or change the stability characteristics of the
dynamic system. So, the PD control gains are first tuned
to satisfy this condition and the unshaped responses of the
PPM are obtained. This response is overlaid on all the plots
of system responses (input positions and torques) to provide
a visual comparison for achieved improvement due to IS.

B. Shaped Responses

A series of input shapers can then be designed not only
for position-level point-to-point (P2P) and multi-step (Mu-
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Fig. 4: Simulink Implementation for PD Control and Input Shaping of PM

Fig. 5: Frequency Distribution of 2−RR Manipulators

St) maneuvers but also for desirable task space velocity
profiles. In the case of velocity-level control, the desired
positional inputs are obtained by integrating the velocity
profiles (for example, integral of unit step is unit ramp) and
the input shaping coefficients remain the same as earlier but
now acts on the integrated input (ramp in this case) of the
system. Though extensive set of case studies were tested and
analyzed, only a subset of these (P2P and Mu-St trajectory
tracking case studies) are discussed here to understand the
resulting benefits.

Specifically the following set of desired trajectories were
used and the corresponding input shaper controls were
examined. Since the start and end states of system are well
defined for P2P maneuvers, that information could be used
to analytically design input shapers offline using eqns.10
and 12. However, the values obtained by this method are
limited by the use of the linearized model used to compute
the dominant poles. Nonetheless this satisfies our desired
response characteristics in this work. The following list
indicates different trajectory testing case-studies carried out.

• Trajectory A: (0.5, 0.5) to (0.5, 0.6)

• Trajectory B: (0.6, 1.15) to (0.7, 1.15)

• Trajectory C: (0.2, 0.6) to (0.5, 1.15)

The IS performance were evaluated by computing the
system frequencies at start-, end- and middle- points of
the trajectory. Figure 6 shows the system response and
control inputs after shaping only using the mean-value
shaper (i.e. shaper parameters obtained by using the center-
point of the task-space trajectory of the end-effector plat-
form). The symbols in the legend (UnR, Sh, Sl, Multi)
of Fig. 6 corresponds to (unshaped, high-frequency mode
compensated, low frequency mode compensated and multi
mode compensated responses) of the system respectively.
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TABLE I: List of Kinematic and Geometric Parameters

Sym. Description Values Units

Ji,j Moment of inertia of the
link, i in chain, j

Ii,1 =
0.04 ,
Ii,2 =
0.12

kg.m2

li,j Length of link i in chain, j 0.2 m
lci,j Location of mass center of

link i in chain, j from the
(i− 1)th joint center

0.1 m

λ Constraint forces or La-
grange multipliers

N

lp Platform side length 0.04 m
B Velocity level constraint ma-

trix (obtained from loop clo-
sure equations)

–

mi,j Mass of the link i in chain,
j

0.1 kg

me Mass and inertia of central
platform

0.5 kg

bjx,
bjy

Base joint location for jth

chain
j = 1 :
[1, 0]T ,
j = 2 :
[0.5, 0.87]T

m

Joint Coordinates (Active and Passive)
θj Active revolute joint in each

chain (j)
rad

φj Passive revolute in each
chain j

rad

The model responses were recorded for each test trajectory
and each input-shaping type (high, low and multi mode
compensated). It can be clearly seen for this specific case
that the damped oscillations in the system are suppressed
compared to the unshaped response resulting in desirable
characteristics (reduced overshoot, faster settling time and
reduced torque magnitudes) for the platform.

The trajectories used in general lie in different regions
of the workspace and enables to understand the feasibility
of our method for manipulators describing local motions
(length of each trajectory is considered to be small) around
distant points within the workspace. The main reason to
intentionally choose such trajectories is to avoid unnecessary
complications induced by wide variation in natural frequen-
cies and damping ratios which is a severe limiting factor
that will be addressed in future work. The test trajectory, C,
however, covers a larger workspace from its center to near
the boundaries of desirable operating region. Implementing
standard IS control may lead to undesirable oscillations
and even result in worse performance than the unshaped
responses. In order to extend the IS to such applications,
we implement Mu-St based IS control. This implies that
when the desired trajectories traverse larger regions of the

workspace, it is possible to compound the single P2P ma-
neuver to multiple close-spaced P2P trajectories. The system
response plot for this case was implemented using only the
MVS on two compounded step inputs to the system as shown
in Fig. 7.

The performance improvement of IS for P2P trajec-
tory maneuverable problems in comparison to unshaped
responses were evaluated using some standard metrics such
as percent residual vibration (PRV ), settling time (Ts) and
maximum overshoot (Mp) that are commonly used for linear
systems and discussed in detail in Kozak et al. [9]. Since the
systems considered in this work are nonlinear, multi DOF
and multi-modal, only three measures were considered to
be useful: fixed and zero times-based maximum overshoot
in position

(
Mqi
p and Mqi

p (ts)
)

and control torques (Mτi
p

and
(
Mτi
p (ts)

)
respectively, settling time (Ts) and percent

residual energy (PRE). For our systems, PRE were calcu-
lated as kinetic energies at the corresponding settling time
for each control mode,

∑Ñ
i=1 τiθ̇i

2
as potential energy terms

are zero.

The use of Mτi
p on torque inputs is emphasized in our

work as these directly determine the maximum actuator ca-
pacities. In a way it indicates a quantitative measure of how
much the IS can help overcome maximum actuator limits
while at the same time providing desirable response char-
acteristics. It can also be easily observed from the response
plots of our case studies that Mτi

p (ts) and Mτi
p (t = 0) turn

out to be a more conservative estimate than the percentage
ratios of shaped and unshaped input torque overshoots. The
Table II summarizes the response characteristics of IS in
terms of the aforementioned performance measures.

From this tabulation, we see that even though vibration
suppression is guaranteed by the IS, ensuring the same w.r.t.
actuator inputs is not possible which would require a more
detailed analysis that is outside the scope of the current
work. This limitation is mainly due to the underlying system
complexities (nonlinear, multimodal and multi-DOF) which
affects the modal characteristics of the system and in turn,
compromises the trajectory tracking capability. Therefore
energy based measures, such as percent residual energy
(PRE) should be preferred to any other measures that
can capture the vibration suppression effects in a more
generalized and conservative manner.

VI. DISCUSSION

Thus, we were able demonstrate the applicability and vi-
ability of input shaping techniques to PPMs with preliminary
results for a specific case of 2− RR system. The resulting
platform trajectories and actuator efforts were then evaluated
using standard performance measures discussed in [9] such
as % rise/ decrease in Mp of positions and actuated torques,
and % residual energy (PRE). Our future efforts will focus
on extending this to PPMs with orientational DOF (such as
3−RRR, 3−RPR, 3−PRR etc) and complex spatial PMs
(SPMs). We also intend to apply these techniques to SPMs,
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Fig. 6: Unshaped and Shaped Responses and Torque Inputs of 2 − RR PPM based on Mean Value Shaper (%Mp in
pos:(0, 39.1), %Mp in actuated torques: (0, 8.3) and PRE at settling time: 1.4)

TABLE II: Evaluation of IS for 2−RR Manipulators

%
Mp(t=0)sh

Mp(t=0)un
%
Tuns −Tshs
Tuns

%Mτi
p PRE

IVS(A)-H 0,39.6 0, 8.3 74.1,75.7 1.5
IVS(A)-M 0,11.1 0,46.0 71.8,72.2 0.0
MVS(A)-H 0,39.1 0,8.3 74.1,75.6 1.4
MVS(A)-M 0, 6.6 0,59.6 71.8,72.1 0.0
FVS(A)-H 0,38.2 0,8.5 74.1,75.6 1.5
FVS(A)-M 0,13.7 0,40.7 69.0,67.6 0.1
MVS(B)-M 15.8,0 47.2,0 92.1,109.3 4.6
MVS(C)-H 15.5,18.2 33.7,41.2 53.2,72.1 6.3

Unshaped response torque overshoot: Traj A (79.1, 80.6), Traj B
(76.0,89.4), Traj C-1st step: (131.3,110.1) & Traj C-2nd step
(92.7,88.7); (H: High mode and M: Multi mode IS control)

especially 5-DOF High-definition haptic device (HD2) [10]
and 6-DOF hexapod [11] for vibration-free pose tracking
and force feedback applications. Additionally, evaluating the
robustness of the IS to parametric uncertainties will be more
useful for such practical applications.
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APPENDIX

Dynamic EoM Matrices for 2−RR

From Fig.3, it can be noted that the individual chains can
be modeled as double pendulum sub-systems with additional
loop closure constraint as discussed in eqn.4. Therefore,
the mass matrix (M ), centrifugal-Coriolis (H) and input
torque (U) vectors for a typical double pendulum [8] can
be obtained as (use i = 1, 2 for 2−RR manipulators):

M i
DP =

[
M i

(1,1) M i
(1,2)

M i
(2,1) M i

(2,2)

]
(12)

where, M i
(1,1) = mi,1Lc

2
i,1 +mi,2L

2
i,2 + Ji,1

M i
(1,2) = M i

(2,1) = mi,2Li,1Lci,2cos(θi − φi)
M i

(2,2) = mi,2Lc
2
i,2 + Ji,2

Hi
DP =

[
mi,2Li,1Lci,2φ̇

2
i sin(θi − φi)

−mi,2Li,1Lci,2θ̇
2
i sin(θi − φi)

]
, U iDP =

[
τi,1
τi,2

]
(13)

For 2−RR manipulators, we have:[
M2RR

]
4×4 = diag(M1

DP ,M
2
DP ) +MEE

2RR (14)

where MEE
2RR is the contribution of end-effector platform

mass to the mass-matrix 2−RR manipulator,

MEE
2RR(1, 1) = mpL

2
1,1,M

EE
2RR(2, 2) = mpL

2
1,2

MEE
2RR(1, 2) = MEE

2RR(2, 1) = mpL1,1L1,2cos(θ1 − φ1)
(15)[

H2RR

]
4×1 =

[
H1
DP , H

2
DP

]
+HEE

2RR (16)[
τ2RR

]
4×1 =

[
U1
DP

U2
DP

]
(17)

HEE
2RR (1) = mpL1,1L1,2φ̇

2
1sin(θ1 − φ1)

HEE
2RR (2) = −mpL1,1L1,2θ̇

2
1sin(θ1 − φ1) (18)

where HEE
2RR is the contribution of end-effector platform

mass to the centrifugal and Coriolis force vectors of 2−RR
manipulator.
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