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Abstract— In the cases related to comminuted fractures, 
a part of bone is damaged/ crushed (comminuted) to the 
point of being missing altogether. As an example this type of 
trauma could occur from military injuries like gunshot 
wounds, explosives, motor vehicle accidents, or falling from 
excessive heights; all where, substantially high energy is 
involved. To enable accurate reconstruction of the 
comminuted fracture surgeon has to believe in his expertise 
and intuition to arrange the broken parts of bone and carry 
out the surgery. A puzzle solving technique will definitely 
help surgeons to practice reconstruction of the broken bone 
fragments prior to surgery in order to avoid errors in 
reconstruction. This paper presents a genetic algorithm 
based approach to obtain optimal sequence of bone 
reconstruction. In order to compare the performance of 
proposed approach, a well-known Iterative closest point 
algorithm is also implemented. The comparison is done 
based on computational time, mean deviation and number of 
iterations. 
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I.  INTRODUCTION  

Fracture reduction i.e. the task of repositioning the 
fragments of a broken bone into their original position is a 
common task in everyday orthopedics practice. For many 
fractures, the correct reposition is apparent and straight-
forward to carry out in practice. However, an accurate 
reduction is difficult to achieve for some fractures because 
the preferred position of the fragments is difficult to infer 
from the existing medical images. The most widely studied 
fracture is the femoral shaft fracture.  Figure 1 shows an 
example along with its modestly insidious treatment by 
intramedullary nailing [1]. In this procedure, a long nail is 
inserted into a bone via a small incision at the hip of knee. 
The fracture site is not directly visible, and surgeon has to 
rely on x-rays to align the fragments. This allows a nearly 
accurate repositioning in the image planes of the 
radiographs.  The rotational alignment around the 
longitudinal axis of the bone poses a much greater 
challenge, as it cannot be observed in these radiographs. A 
clinical study done by Jaarsma and his group [2] has found 
a rotational malalingment of over 15 degrees in 28%  
patients.  

 

Fig. 1. A broken femur (left) treated with an 
intramedullary nail (right). Even in views from two 

perspectives, it is hard to judge the rotational alignment of 
the fragments [1] 

II. PRIOR WORK 

A few groups have worked on automatic bone fracture 
reduction. A computer assisted method, dealing with 
complex proximal humerus fracture  was described by 
Bicknell et al [3]. They have reported an experimental 
study for the treatment of 4 part fracture via a 
hemiarthroplasty.  They have compared CAS approach for 
placement of the hemoarthroplasty and the reduction  of 
the tuberosity fragments with traditional surgecial 
technique. Another directly related work focuses on 
planning of fracture reduction of broken femur heads by 
Okada et al. [7]. They had proposed three different 
methods based on iterative closest point algorithm. The 
registration of fragments was done either (a) to the 
contralateral bone, (b) to fracture surfaces or (c) to 
fracture surfaces using the contralteral bone as a 
constraint. The authors concluded that first method 
suffered from the problem of local minima whereas other 
two overcome this problem. Meghari and Abolmaesumi 
[4]  proposed an automatic  method for global registration 
of multiple bone fragments. Their algorithm comprised of 
local and global registration steps. In the local step, each 
fragment was initially aligned to an anatomical plan of the 
bone based on statistical model. For each candidate pair a 
similarity transform was applied to match the fragment 
with the template. The point cloud of the corresponding 
parts were centered and oriented according to their eigen 
vectors and eigen values. After local registration, global 
registration was done using Kalman filtering. Their 
method of global alignment demonstrated high accuracy 
in a cadaver study. Willis et al [5] proposed a 
reconstruction technique for highly fragmented long 
bones by including, the segmented spongy bone. They 
have used multibody ICP algorithm with modified error 
metric. The method proposed byt them relied on manual 
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identification of likely corresponding fracture surfaces. 
Several aspects of this method were improved by Zhou et 
al. [6]. The manually recognized matching surfaces were 
structured into groups representing the same fragment pair 
in order to prevent oscillations in the pairwise registration. 
Additionally, geometrically stable subsampling was 
incorporated in the pairwise and multi-body alignment 
steps to improve the registration of featureless surfaces. 
The performance of the algorithm was demonstrated on 
one clinical tibila pilon case acquired from CT as well as 
on several artificially generated fractures based on bone 
replicas.  Other variants of ICP used for automated data 
inspection [9], registration of 3D data [10] and fusing 
laser and vision data with genetic ICP algorithms [11] are 
the remarkable contributions to wards the performance 
enhanacement of the ICP algorithm. 

III.  PROPOPOSED APPROACH  

The approach proposed in this paper is designed in a  
modular fashion as illustrated in Fig 2.  The input data for 
the first module are CT scans of patient’s fractured bone 
and mirrored contra lateral bone. The fragments of the 
broken bone are represented as surface meshes generated 
from the segmented CT scans. The main idea is to align 
main and functionally important fragments to an intact 
reference bone. This ensures anatomically correct 
repositioning of the main fragments, independent of the 
geometry of the fracture surfaces and possible small 
additional fragments. The contralateral bone is considered 
as a template and fragments of the bone are aligned to it 
using iterative closest point algorithm and genetic 
algorithm. 

 

 
 

Figure 2 Proposed approach for fracture reduction 
 

A. Iterative Closest point algorithm: 

Iterative Closest Point (ICP) (Besl and McKay, 1992) [8] 
is an algorithm employed to minimize the difference 

between two clouds of points. ICP is often used to 
reconstruct 2D or 3D surfaces from different scans, to 
localize robots and achieve optimal path planning 
(especially when wheel odometry is unreliable due to 
slippery terrain), to co-register bone models, etc. The 
algorithm is conceptually simple and is commonly used in 
real-time. It iteratively revises the transformation 
(translation, rotation) needed to minimize the distance 
between the points of two raw scans. Inputs to the 
algorithm are points from two raw scans, initial estimation 
of the transformation and criteria for stopping the 
iteration. The output of the algorithm is the refined 
transformation.  
The iterative closest point algorithm is developed to 
register two given sets of points or 3D shapes in a 
common coordinate system. The algorithm iteratively 
calculates the registration. In each iteration step, the 
algorithm selects the closest points as correspondences 
and calculates rotation and translation (R,t), for 
minimizing the following error equation 
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Nm and Np are the number of points in model set M and 
dataset P, respectively. wij are the weights for a point 
match. They are assigned as wij=1, if mi is the closest 
point to pj and wij=0 otherwise. In the iterative closest 
point algorithm, transformations can be calculated by 
different methods. The version of ICP used in this work 
makes use of quaternions that can be used for two and 
three dimensions.  Besl and McKay mathematically 
proved that ICP converges to a local minimum and hence 
to reach to global minimum, good initial feasible solution 
or initialization parameters are necessary. Local minima 
become an issue of major concern when points are 
overlapping partially or fully. The protocol followed by 
ICP is explained in the following figure 3. The point set of 
model and data to be checked are given. First estimation 
of the transformation is done. This estimation is 
considered as an initial value as well as maximally 
allowed error, the threshold ε and a boundary condition 
for non-convergence and maximum number of iterations, 
kmax. The figure 3(a) represents an initial state represented 
by the blue model point set and the red data point set. 
Figure 3(b) shows the search of closest point in the model 
to each point of data set. Then the new transformation 
matrices (fig. 3(c)) is calculated according to the 
minimized error of equation (1) and applied to the data 
set. Further, actual error is compared to ε. Iterations are 
continued until termination condition is achieved. The 
initialization process can be terminated as new improved 
state is obtained. Hence, in next iteration starts with the 
matching step as shown in fig. 3(d). These iterations are 
repeated until error is small enough as shown in fig. 3(e) 
or the maximum number of iteration kmax is reached. Even 
though algorithm converges at minimum error it is a best 
possible match rather than a perfect match. 
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              (a) initial state               (b) match 

 
(c) transform           (d) match again      (e) final state 
 
Figure 3 (a) Initial state with two point sets, the blue 
model and the red data set (b) Searching the closest points 
of each data point (c) State after the applied 
transformation (d) Next iteration, searching for the closest 
points again (e) Final matched state after the 
transformation 
 
GENETIC ALGORITHM :  
The iterative closest point algorithm is effective provided 
that a good initial feasible solution is available. If the 
initial solution is far away from the actual solution, then 
there are more  chances of getting incorrect solution. In 
such one to one correspondence matching approaches, 
relations  are determined by matching features taken from 
the images. However, since it is not possible to define a 
unique feature in  3D objects, correspondence matching 
depends on application under consideration. The 
correspondence matching can be done manually which 
might be very time consuming process. This in turn will 
make automatic surface registration impossible. This 
matching of two free-form surfaces can be framed as  an 
optimization problem. formulation of such search problem 
may lead to a 6 dimensional optimization problem with 
many local extrema. This problem is proposed to be 
solved using simple genetic algorithm in this work. the 
mechanism used by genetic algorithm is based on  natural 
selection and natural genetics. A possible solution is 
formulated as a chromosome in a string structure. Each 
element of this string structure represents one parameter 
in the solution. A collection of all possible solutions 
(chromosomes) forms a generation. It produces another 
generation through a search process. The search process 
of genetic algorithm follows the rule “survival for fittest”. 
This rule is followed after a structured but randomized 
information exchange within the existing generation to 
yield a new generation. For the genetic algorithms to be 
successful, the methodology adopted to formulate the 
chromosome and fitness function is very vital. The genetic 
algorithms show good convergence provided that the 

continuity of fitness function is maintained. Moreover,  
the chromosome with the optimal fitness value must 
correspond to  the target solution. The procedure adopted 
for formulations of the chromosomes and the fitness 
function for surface registration is described in the 
following section: 

 
GENE AND CHROMOSOME  
The geometric relation i.e. transformations between two 
surfaces can be defined by six parameters i.e. three 
parameters  for position and three for orientation. These 
six parameters can be used to define as a chromosome. 
Because of this split in 6 parameters, 2 genes can be 
obtained i.e. translation gene which consists of 
transformation matrix along x,y and z direction and the 
rotation matrix which indicated rotation about x,y, and z 
axis. The structure of genes is as follows: 
 
Translation Gene :  
Tx: Translate on x axis  ;  
Ty: Translate on y axis ; 
 Tz: Translate on z axis  
 
Rotation Gene :  
α: Rotate about x axis;  
β: Rotate about y axis; 
θ: Rotate about z axis 
S : scaling gene 
 
Tx , Ty and Tz  are the translation genes and, α, β and θ 
are the rotation genes. They form a chromosome [Tx, Ty, 
Tz, Rx, Ry, Rz] which represents the relation (3D 
transformation matrix) between two free-form surfaces, 
i.e the data points in two data sets are related by the 
mapping,  T= Rx Ry Rz S , where 

�� � �1 0 0 00 ���� ���� 00 ���� ���� 00 0 0 1� ;						 
	�� � ����� 0 ���� 00 1 0 0���� 0 ���� 00 0 0 1� ; 
� � � ���θ ���θ 0 0���θ ���θ 0 00 0 1 00 0 0 1� ; 
! � � 1 0 0 00 1 0 00 0 1 0"� "� " 1� ; 
 
 FITNESS FUNCTION  
A genetic algorithm uses a fitness function to determine 
the performance of each artificially created chromosome. 
Therefore the fitness function  measures the registration 
quality i.e. the matching error caused by each 
chromosome. When two pairs match, the Euclidean 
distance between each correspondence pair tends to zero.  
Hence, for registration of two surfaces, genetic algorithm 

892



 
Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013 

 
 

searches for the minimum Euclidean distance between 
each correspondence pair. However, for true matching, 
determination of the final transformation is necessary. 
Hence, the “best possible” correspondence is used instead, 
to measure the fitness of a given chromosome, T. Given a 
set of points {Pi} in S1(size N1) and {Qj} in S2 (size N2), 
the point CPi  in S2 is defined as the “best possible” 
correspondence of Pi under the transformation T, such 
that the Euclidean distance, Ei  between CPi  and TPi is 
the minimum among all points in S2. This is the best 
possible matching as any other correspondence will  result 
into higher matching error. Since the two given free-form 
surfaces may not totally overlap each other, some points 
on surface S1 may have no correspondence on surface S2 
even the identified transformation is correct. Therefore, if 
all Ei  are considered, the fitness of the solution may not 
tend to zero as no correspondence can be found for some 
points. Therefore, the median of  Ei as the fitness 
measurement is adopted instead of the average Euclidean 
distance Ei. So for a chromosome representing a 
transformation T, the corresponding fitness measurement 
is F(T) and is defined as: F(T) = Median(Ei) for 1 ≤ i ≤ N1 
where Ei  = |TPi – CPi  | and CPi  = Qk such that |Qk – 
T(Pi)| ≤  |Qj – T(Pi)| for all j where 1  ≤  j  ≤  N2. 
Evaluation of fitness function described above  requires a 
search on the closest point from a data set given an input 
data point.  
 
REPRODUCTION 
The reproduction state of genetic algorithm is about 
generation of  a new set of possible solutions from the 
current set. For this purpose, Cross-over and Mutation are 
the generally used standard operators. In this formulation, 
real value coding of genes is done. Therefore, each gene 
in a chromosome is having a small value instead of 
changing from 0 to 1 or 1 to 0 for a binary gene during the 
mutation stage. The value of gene is generated randomly 
within the range [-MV, +MV]. While the maximum value 
(MV) has been kept constant. If the fitness value is large, 
the chromosome is far away from the optima point. 
Hence, a far jump is needed to get to a better chromosome 
and hence  MV is kept at a larger value. Conversely, if 
only small movement is needed then MV is set to be a 
small value. Therefore, maximum allowed movement of 
the translation genes is set to FIT(Ti) / sqrt (3). 

IV.   CASE STUDY 

In order to evaluate the performance of the proposed 
approach, one case problem of femur shaft fracture is 
considered. For this purpose, 3D solid model of femur 
shaft was taken (Fig. 4).  
 
 
 
 
 

Figure 4 3D solid model of femur 

 
A random fracture was introduced in the solid model. The 
3D solid model of femur and fracture femur was 
converted to a .step file. The point cloud necessary for 
analysis was obtained from this file. The recognition of 
fragments of the bone was done manually. S1 matrix 
consists of pose data of healthy bone and S2 matrix consist 
of pose data of fragments. These both matrices were 
utilized as input to the iterative closest point algorithm 
and genetic algorithm. In order to reduce the 
computational burden, the point cloud of S1 was of only 
130 points where as for S2 , it varies from 11 to 45 points 
based on size of the bone fragment. The plot of point 
cloud in 2d is presented in the Figure 5. 
 

 
Figure 5 Plot of the 130 points obtained from the solid 

model for analysis (S1) 
 

The five different fragments were considered for the 
analysis. A solid model of individual fragment was 
obtained and meshed to get the point cloud. The number 
of cloud points considered for various fragments are as 
follows: Fragment 1 : 11 points, fragment 2: 11 points, 
fragment 3: 12 points, fragment 4: 12 points , fragment 5: 
45 points. The points on the intact bone were used as 
target whereas points on fragments were considered 
source. The correspondence between these points cloud 
was obtained using iterative closest point algorithm and 
genetic algorithm.  

V.  RESULTS AND DISCUSSION 

The above mentioned case problem was solved using 
Iterative closets point. This algorithm finds out the 
correspondence between two point clouds.  ICP fit points 
in data (S2) to the points in model (S1).  The fitting is done 
in such a way that the sum of square of  errors with the 
closest model points and data points is minimized. The 
output of this algorithm is the rotation matrix and 
translation vector. If the original data points are multiplied 
by this rotation matrix and translation vector, then it gives 
the new data. This new data has correspondence with the 
model data (S1). For this problem, maximum number of 
iterations were fixed to 1000, minimum number of 
iteration were set to 10. The fitting parameter was 
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considered to be 0.95 which means that fitting of data is 
done until 0.95 times of closest square errors are obtained. 
The error difference threshold for stopping iteration was 
considered to be 0.1. The meshing of solid model is done 
using coarse mesh and very few data points were used for 
analysis to reduce the computational burden. Hence, the 
threshold value was considered to be 0.1. The results 
obtained after implementation of this algorithm to the 
given problem using MATLAB are presented in the 
following Table 1.  
 
Table 1 Performance of  iterative closest point algorithm 
S 

r no 
Fragment Number 

of 
iteratio

n 

Mean deviation 
(New_data-
old_data) 

New_data = 
R*old_data+T 

Computational 
time 

(seconds) 

1 Fragment 1 42 0.2577 22 
2 Fragment 2 36 0.3461 23 
3 Fragment 3 118 0.4792 68 
4 Fragment 4 107 0.2148 48 
5 Fragment 5 817 0.6138 130 

 
SIMPLE GENETIC ALGORITHM: 
The methodology of genetic algorithm presented in the 
previous section is implemented to obtain the 
correspondence between S1 and S2 fragments. The pose 
data i.e. position and orientation of point is given as an 
input to the genetic algorithm. The value of one gene is 
computed by suitably substituting this pose data in  T=[ 
Rx Ry Rz S ]. This is the value encoding of the gene. The 
value of crossover was set to 0.58. The results obtained 
after application of simple genetic algorithm are presented 
in the Table 2: 
 

Table 2 performance of simple genetic algorithm 
S
r 
n
o 

Fragment  Numb
er of 

genera
tion 

Mean 
deviation  

(New_data-
old_data) 

New_data = 
R*old_data+

T 

Computation
al time  

(seconds) 

1 Fragment 1 66 6.93 29.51 
2 Fragment 2 49 1.81 39.92 
3 Fragment 3 118 6.35 86.28 
4 Fragment 4 130 6.56 68.78 
5 Fragment 5 819 8.56 146.79 
 
From the results presented in Table 1 and 2, it can be seen 
that the number generations/iterations required to bring 
correspondence between points on S1 and S2 by iterative 
closest point algorithm are less as compared to genetic 
algorithm. The main reason for this observation can be 
related to random search technique adopted by simple 
genetic algorithm. The number of generations required 
can be reduced if the guess solution is predicted very near 
to the desired solution. Moreover, it can be seen that 
because of more number of generations, computational 

time required for the genetic algorithm is also more. The 
analysis is performed using intel core-2 duo processor 
with 1.60 GHz) speed. The obvious reason is the number 
of iterations and number of data points handled.  
 
The mean deviation is nothing but the difference between 
the actual data and the data obtained using algorithms. 
The results obtained using genetic algorithm are not 
impressive as compared to iterative closest point 
algorithm. A higher value of mismatch is presented by the 
standard deviation values for genetic algorithm whereas 
ICP gives better results.  
 
The major difference between two methodologies lies in 
the concept. The simple genetic algorithm makes use of 
position as well as orientation  of the point whereas ICP 
utilizes only position information of any point. Because of 
this, the amount of information handled by ICP is less as 
compared to genetic algorithm. Moreover, number of 
points in the point cloud considered for study is less as 
compared with the datapoints obtained after meshing. The 
accuracy of fragment correspondence can be increased if 
more number of data points are considered. The 
performance of GA can be further increased if 
hybridization of ICP is done with GA. This will result in 
utilization of ICP for prediction of initial guess solution 
and improvement of solution will be done by the genetic 
algorithm.  
 
From above analysis, a rough estimate of sequence of 
fracture reduction and quality of output can be made. 
However, in order to provide a complete solution of 
fracture reduction can be provided only if 1. Complete CT 
scan data is utilized 2. Presentation of algorithm output is 
done in an interactive fashion and 3. User friendly 
interface is made.  
 

VI.  CONCLUSIONS 

This paper presents a concept of implementation of simple 
genetic algorithm to get the proper sequence and position 
of the fracture fragments in correspondence with the 
original bone. The performance of the proposed genetic 
algorithm is compared with iterative closest point 
algorithm. From above discussion, it can be concluded 
that the  genetic algorithm can handle  pose data of any 
point comfortably in contrast with ICP. This aspect is 
most important to present the outcome of algorithm in an 
interactive fashion. From computational point of view, 
genetic algorithm is costly. However, implementation of 
any methodology can improve the performance of genetic 
algorithm.  
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