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Abstract— In the cases related to comminuted fractures,
a part of bone is damaged/ crushed (comminuted) to the
point of being missing altogether. As an example this type of
trauma could occur from military injuries like gunshot
wounds, explosives, motor vehicle accidents, or falling from
excessive heights; all where, substantially high energy is
involved. To enable accurate reconstruction of the
comminuted fracture surgeon has to believe in his expertise

and intuition to arrange the broken parts of bone and carry Fig. 1. A broken femur (left) treated with an

out the surgery. A puzzle solving technique will definitely intramedullary nail (right). Even in views from two

help surgeons to practice reconstruction of the broken bone perspectives, it is hard to judge the rotational alignment of
fragments prior to surgery in order to avoid errors in the fragments [1]

reconstruction. This paper presents a genetic algorithm

based approach to obtain optimal sequence of bone 1. PRIOR WORK

reconstruction. In order to compare the performance of )
proposed approach, a well-known lIterative closest point A few groups have worked on automatic bone fracture

algorithm is also implemented. The comparison is done reduction. A computer assisted method, dealing with
based on computational time, mean deviation and number of complex proximal humerus fracture was described by
iterations. Bicknell et al [3]. They have reported an experimental
study for the treatment of 4 part fracture via a
hemiarthroplasty. They have compared CAS approach for
placement of the hemoarthroplasty and the reduction of
I INTRODUCTION the tuberosity fragments with traditional surgecial

Fracture reduction i.e. the task of repositioning thetechmque. Another directly related work focuses on

fragments of a broken bone into their original position is %anning of fracture reduction of broken femur heads by
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common task in everyday orthopedics practice. For man kada et al. [7]. '_I'hey_ had propose_d three_ different
fractures, the correct reposition is apparent and straighf?ethods based on iterative closest point algorithm. The
forward to carry out in practice. However, an accuratd€gistration of fragments was done either (a) to the
reduction is difficult to achieve for some fractures becaus€ontralateral bone, (b) to fracture surfaces or (c) to
the preferred position of the fragments is difficult to inferfracture surfaces using the contralteral bone as a
from the existing medical images. The most widely studie@onstraint. The authors concluded that first method
fracture is the femoral shaft fracture. Figure 1 shows aguffered from the problem of local minima whereas other
example along with its modestly insidious treatment bytwo overcome this problem. Meghari and Abolmaesumi
intramedullary nailing [1]. In this procedure, a long nail is[4] proposed an automatic method for global registration
inserted into a bone via a small incision at the hip of kneef multiple bone fragments. Their algorithm comprised of
The fracture site is not directly visible, and surgeon has tbcal and global registration steps. In the local step, each
rely on x-rays to align the fragments. This allows a nearlfragment was initially aligned to an anatomical plan of the
accurate repositioning in the image planes of theyone based on statistical model. For each candidate pair a
radiographs. ~ The rotational alignment around thesimjlarity transform was applied to match the fragment
longitudinal axis of the bone poses a much greatef the template. The point cloud of the corresponding
challenge, as it cannot be observed in these rad|ographs.p%rts were centered and oriented according to their eigen

clinical study done by Jaarsma and his group [2] has fouor\gectors and eigen values. After local registration, global
a_rotational malalingment of over 15 degrees in 28/‘fegistration was done using Kalman filtering. Their

patients. method of global alignment demonstrated high accuracy
in a cadaver study. Willis et al [5] proposed a
reconstruction technique for highly fragmented long
bones by including, the segmented spongy bone. They
have used multibody ICP algorithm with modified error
metric. The method proposed byt them relied on manual
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identification of likely corresponding fracture surfaces.between two clouds of points. ICP is often used to
Several aspects of this method were improved by Zhou eeconstruct 2D or 3D surfaces from different scans, to
al. [6]. The manually recognized matching surfaces weréocalize robots and achieve optimal path planning
structured into groups representing the same fragment pdispecially when wheel odometry is unreliable due to
in order to prevent oscillations in the pairwise registrationslippery terrain), to co-register bone models, etc. The
Additionally, geometrically stable subsampling wasalgorithm is conceptually simple and is commonly used in
incorporated in the pairwise and multi-body alignmentreal-time. It iteratively revises the transformation
steps to improve the registration of featureless surfaceftranslation, rotation) needed to minimize the distance
The performance of the algorithm was demonstrated obhetween the points of two raw scans. Inputs to the
one clinical tibila pilon case acquired from CT as well asalgorithm are points from two raw scans, initial estimation
on several artificially generated fractures based on bonef the transformation and criteria for stopping the
replicas. Other variants of ICP used for automated datiéeration. The output of the algorithm is the refined
inspection [9], registration of 3D data [10] and fusingtransformation.

laser and vision data with genetic ICP algorithms [11] ar&he iterative closest point algorithm is developed to
the remarkable contributions to wards the performanceegister two given sets of points or 3D shapes in a

enhanacement of the ICP algorithm. common coordinate system. The algorithm iteratively
calculates the registration. In each iteration step, the
1. PROPOPOSED APPROACH algorithm selects the closest points as correspondences

The approach proposed in this paper is designed in ahd calculates rotation and translation (R,t), for
modular fashion as illustrated in Fig 2. The input data fominimizing the following error equation

the first module are CT scans of patient’s fractured bone Nm Np )
and mirrored contra lateral bone. The fragments of th&(R,t) = ZZW” |m: — (Rp; + )| (1
broken bone are represented as surface meshes generated i=1 =1

from the segmented CT scans. The main idea is to align

main and functionally important fragments to an intactN,, and N, are the number of points in model set M and
reference bone. This ensures anatomically correcjataset P, respectively.;vare the weights for a point
repositioning of the main fragments, independent of thenatch. They are assigned ag=t, if m is the closest
geometry of the fracture surfaces and possible smafoint to p and w=0 otherwise. In the iterative closest
additional fragments. The contralateral bone is consideregoint algorithm, transformations can be calculated by
as a template and fragments of the bone are aligned todifferent methods. The version of ICP used in this work
using iterative closest point algorithm and geneticmakes use of quaternions that can be used for two and

algorithm. three dimensions. Besl and McKay mathematically
777777777777777777777777777 N proved that ICP converges to a local minimum and hence
E T per——— ) ; to reach to global minimum, good initial feasible solution
i | fractured bome . i or initialization parameters are necessary. Local minima
i separation of fragmentsJ i b : f : h int
: ! ecome an issue of major concern when points are
i v i overlapping partially or fully. The protocol followed by
i [Mirrored CT of contra Triangle mesh of ; ICP is explained in the following figure 3. The point set of
! lateral hone fragments and ! model and data to be checked are given. First estimation
i contralateral hone ; of the transformation is done. This estimation is
R . considered as an initial value as well as maximally
v allowed error, the threshold and a boundary condition
Coniralateral registration for non-convergence and maximum number of iterations,
considering coniralateral knax- The figure 3(a) represents an initial state represented
hone as template by the blue model point set and the red data point set.

| Figure 3(b) shows the search of closest point in the model
[Imemive closestpeint algorithmJ to each point of data set. Then the new transformation

matrices (fig. 3(c)) is calculated according to the

and genetic algorithm o . -
minimized error of equation (1) and applied to the data

y set. Further, actual error is comparedstdterations are
Pair wise fracture continued until termination condition is achieved. The
surface alignment initialization process can be terminated as new improved

state is obtained. Hence, in next iteration starts with the
Figure 2 Proposed approach for fracture reduction ~ Matching step as shown in fig. 3(d). These iterations are
repeated until error is small enough as shown in fig. 3(e)
) ) ) or the maximum number of iteratidq,y is reached. Even
A. Iterative Closest point algorithm: though algorithm converges at minimum error it is a best
Iterative Closest Point (ICP) (Besl and McKay, 1992) [8]possible match rather than a perfect match.
is an algorithm employed to minimize the difference
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continuity of fithess function is maintained. Moreover,
the chromosome with the optimal fithess value must
correspond to the target solution. The procedure adopted
for formulations of the chromosomes and the fitness
function for surface registration is described in the
following section:

o GENE AND CHROMOSOME
The geometric relation i.e. transformations between two
(a) initial state (b) match surfaces can be defined by six parameters i.e. three
R = parameters for position and three for orientation. These
six parameters can be used to define as a chromosome.
" ) / ° Becquse o_f this split ir_l 6 parameters, 2 genes can be
. / o obtained i.e. translation gene which consists of
» ® ,/' ° transformation matrix along x,y and z direction and the
o, e ° rotation matrix which indicated rotation about x,y, and z
o e axis. The structure of genes is as follows:

- . Translation Gene :
(c) transform (d) match again (e) final state Tx: Translate on x axis :

Ty: Translate on y axis ;
Figure 3 (a) Initial state with two point sets, the blue T;: Translate on z axis
model and the red data set (b) Searching the closest points
of each data point (c) State after the appliedrgtiation Gene :
transformation (d) Next iteration, searching for the closest,. Rotate about x axis:
points again (e) Final matched state after
transformation

t eB Rotate about y axis;
0: Rotate about z axis

S : scaling gene
GENETIC ALGORITHM 99

The iterative closest point algorithm is effective provided
that a good initial feasible solution is available. If the
initial solution is far away from the actual solution, then
there are more chances of getting incorrect solution. Ig
such one to one correspondence matching approaches
relations are determined by matching features taken fro
the images. However, since it is not possible to define g1app|ng,
unique feature in 3D objects, correspondence matching
depends on application under consideration. Th&kx =
correspondence matching can be done manually which

Tx, Ty and Tz are the translation genes and3 and6
are the rotation genes. They form a chromosome [TX, Ty,
z, Rx, Ry, Rz] which represents the relation (3D
ansformation matrix) between two free-form surfaces,
|1r‘|é the data points in two data sets are related by the
T=Rx Ry Rz S, where

0 0 0
0 cosa sina 0],
0 -—sina cosa 0]’

might be very time consuming process. This in turn will cosp 00 —s?nﬁ 10
make automatic surface registration impossible. This 0 1 0 0

matching of two free-form surfaces can be framed as afy = sinﬁ 0 0
optimization problem. formulation of such search problem 1
may lead to a 6 dimensional optimization problem with lcos@ Smg 0 0}

’

cosﬁ

many local extrema. This problem is proposed to be —sin® cos® 0 0
solved using simple genetic algorithm in this work. the Rz =
mechanism used by genetic algorithm is based on natural

selection and natural genetics. A possible solution is 1 0
formulated as a chromosome in a string structure. Eac 0 0]
element of this string structure represents one parameter— | 0 0 1 0]’
in the solution. A collection of all possible solutions Tx Ty Tz 1

(chromosomes) forms a generation. It produces another

generation through a search process. The search proceSENESS FUNCTION

of genetic algorithm follows the rule “survival for fittest”. A genetic algorithm uses a fitness function to determine
This rule is followed after a structured but randomizedhe performance of each artificially created chromosome.
information exchange within the existing generation toTherefore the fitness function measures the registration
yield a new generation. For the genetic algorithms to bquality i.e. the matching error caused by each
successful, the methodology adopted to formulate thehromosome. When two pairs match, the Euclidean
chromosome and fitness function is very vital. The genetidistance between each correspondence pair tends to zero.
algorithms show good convergence provided that thélence, for registration of two surfaces, genetic algorithm
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searches for the minimum Euclidean distance between

each correspondence pair. However, for true matchingh random fracture was introduced in the solid model. The
determination of the final transformation is necessary3D solid model of femur and fracture femur was
Hence, the “best possible” correspondence is used insteazhnverted to a .step file. The point cloud necessary for
to measure the fitness of a given chromosome, T. Givenanalysis was obtained from this file. The recognition of
set of points {Pi} in $(size N1) and {Qj} in $ (size N2), fragments of the bone was done manually. n$atrix

the point CPi in Sis defined as the “best possible” consists of pose data of healthy bone anch&trix consist
correspondence of Pi under the transformation T, sucbf pose data of fragments. These both matrices were
that the Euclidean distance, Ei between CPi and TPi igtilized as input to the iterative closest point algorithm
the minimum among all points in,SThis is the best and genetic algorithm. In order to reduce the
possible matching as any other correspondence will resutbmputational burden, the point cloud qf Bas of only
into higher matching error. Since the two given free-forml130 points where as for, Sit varies from 11 to 45 points
surfaces may not totally overlap each other, some pointsased on size of the bone fragment. The plot of point
on surface Smay have no correspondence on surface Scloud in 2d is presented in the Figure 5.

even the identified transformation is correct. Therefore, if

all Ei are considered, the fitness of the solution may not :

tend to zero as no correspondence can be found for some \

points. Therefore, the median of Ei as the fitness $ N
measurement is adopted instead of the average Euclidean 7 L ~‘,.‘.’:, %
distance Ei. So for a chromosome representing a . x‘ N
transformation T, the corresponding fitness measurement : ’Q'{‘
is F(T) and is defined as: F(T) = Median(Ei) foe 1< N; 5 § 3
where Ei = |TPi — CPi | and CPi = Qk such that |Qk — \ ; 0%
TP < |Qj — T(Pi)| for all j where 1< j < N, $ % ¢
Evaluation of fitness function described above requires a . § 3
search on the closest point from a data set given an input , SR
data point. § g 8

1 ’: . .'.
REPRODUCTION , A 5
The reproduction state of genetic algorithm is about boes 1 as semf et

generation of a new set of possible solutions from the 1

current set. For this purpose, Cross-over and Mutation are Figure 5 Plot of the 130 points obtained from the solid
the generally used standard operators. In this formulation, model for analysis ($

real value coding of genes is done. Therefore, each gene

in a chromosome is having a small value instead oThe five different fragments were considered for the
changing from 0 to 1 or 1 to O for a binary gene during th@nalysis. A solid model of individual fragment was
mutation stage. The value of gene is generated randombptained and meshed to get the point cloud. The number
within the range [-MV, +MV]. While the maximum value of cloud points considered for various fragments are as
(MV) has been kept constant. If the fitness value is largdpllows: Fragment 1 : 11 points, fragment 2: 11 points,
the chromosome is far away from the optima pointfragment 3: 12 points, fragment 4: 12 points , fragment 5:
Hence, a far jump is needed to get to a better chromosord® points. The points on the intact bone were used as
and hence MV is kept at a larger value. Conversely, ifarget whereas points on fragments were considered
only small movement is needed then MV is set to be @ource. The correspondence between these points cloud
small value. Therefore, maximum allowed movement ofwas obtained using iterative closest point algorithm and
the translation genes is set to FIT(Ti) / sqrt (3). genetic algorithm.

IV. CASE STUDY V. RESULTSAND DISCUSSION

In order to evaluate the performance of the proposedhe above mentioned case problem was solved using
approach, one case problem of femur shaft fracture ikerative closets point. This algorithm finds out the
considered. For this purpose, 3D solid model of femurcorrespondence between two point clouds. ICP fit points
shaft was taken (Fig. 4). in data () to the points in model ¢ The fitting is done

in such a way that the sum of square of errors with the
closest model points and data points is minimized. The
output of this algorithm is the rotation matrix and
translation vector. If the original data points are multiplied
by this rotation matrix and translation vector, then it gives
the new data. This new data has correspondence with the
model data (§. For this problem, maximum number of
iterations were fixed to 1000, minimum number of
Figure 4 3D solid model of femur iteration were set to 10. The fitting parameter was
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considered to be 0.95 which means that fitting of data iime required for the genetic algorithm is also more. The
done until 0.95 times of closest square errors are obtainednalysis is performed using intel core-2 duo processor
The error difference threshold for stopping iteration waswith 1.60 GHz) speed. The obvious reason is the number
considered to be 0.1. The meshing of solid model is donef iterations and number of data points handled.
using coarse mesh and very few data points were used for
analysis to reduce the computational burden. Hence, thEhe mean deviation is nothing but the difference between
threshold value was considered to be 0.1. The resulthe actual data and the data obtained using algorithms.
obtained after implementation of this algorithm to theThe results obtained using genetic algorithm are not
given problem using MATLAB are presented in theimpressive as compared to iterative closest point
following Table 1. algorithm. A higher value of mismatch is presented by the
standard deviation values for genetic algorithm whereas
Table 1 Performance of iterative closest point algorithm ICP gives better results.

S | Fragment Numbe|Mean deviation Computationa

r no of (New_data- time The major difference between two methodologies lies in
iteratio] old_data) (seconds) the concept. The simple genetic algorithm makes use of

n New_data = position as well as orientation of the point whereas ICP

R*old_data+T utilizes only position information of any point. Because of

1 | Fragmentl 42 0.2577 22 this, the amount of information handled by ICP is less as
2 | Fragment 2 36 0.3461 23 compared to genetic algorithm. Moreover, number of
3 | Fragment3 118 0.4792 68 points in the point cloud considered for study is less as
4 | Fragment4 107 0.2148 48 compared with the datapoints obtained after meshing. The
5 | Fragmenty 817 0.6138 130 accuracy of fragment correspondence can be increased if
more number of data points are considered. The

SIMPLE GENETIC ALGORITHM: performance of GA can be further increased if

The methodology of genetic algorithm presented in th@yt.)ridi.zation of ICP is dor_1e.with GA .This will result_ in
previous section is implemented to obtain theutilization of ICP for prediction of initial guess solution
correspondence between S1 andfrf8gments. The pose and improvement of solution will be done by the genetic
data i.e. position and orientation of point is given as aflgorithm.

input to the genetic algorithm. The value of one gene is ) )

computed by suitably substituting this pose data in T=fTom above analysis, a rough estimate of sequence of
Rx Ry Rz S ]. This is the value encoding of the gene. Th acture repluct|0n and qual_lty of output can be_made.
value of crossover was set to 0.58. The results obtainddoWeVver, in order to provide a complete solution of

after application of simple genetic algorithm are presenteffacture reduction can be provided only if 1. Complete CT
in the Table 2: scan data is utilized 2. Presentation of algorithm output is

done in an interactive fashion and 3. User friendly

Table 2 performance of simple genetic algorithm  interface is made.

S| Fragment Numb Mean Computation

r er of deviation al time VI. CONCLUSIONS

n genera| (New_data- (seconds) ) ] ) )

0 tion old_data) This paper presents a concept of implementation of simple
New data = genetic algorithm to get the proper sequence and position
R*old data+ of the fracture fragments in correspondence with the

T original bone. The performance of the proposed genetic

1| Fragment 1 66 6.93 2951 algor!thm is compared .With .itera_tive closest point

2| Fragment 2 49 181 39.92 algorithm. From abovg discussion, it can be concluded

3| Fragment 3 118 6.35 8628 tha}t the genetic a]gorlthm can handle pose data of any

4| Fragment 4 130 6.56 68.78 point _comfortably in contrast with ICP. This aspect is

5| Fragment5 819 8:56 146'79 most important to present the outcome of algorithm in an

interactive fashion. From computational point of view,

netic algorithm is costly. However, implementation of

y methodology can improve the performance of genetic
gorithm.

From the results presented in Table 1 and 2, it can be segﬁ
that the number generations/iterations required to bringI
correspondence between points qnaBd $ by iterative
closest point algorithm are less as compared to genetic
algorithm. The main reason for this observation can bTQEFERENCES

related to random search technique adopted by simple
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