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Abstract— Shaft-rotor systems consisting of multi disks 

and profiled shafts are taken into consideration. The 
determination of deflection, slope, shear force and bending 
moment at the extremities of the shaft are done using 
conventional mathematical procedures. Transfer matrix 
method (TMM) is used for the computation of the resonance, 
critical speed or whirling frequency conditions. For 
particular profiles and rotational speeds and lengths, the 
response of the system is determined. A built-in profiled 
shaft-rotor system with two disks and an impulse load of 1N 
on the disk at the free end of the system is investigated for 
illustration purpose. The step response of the multi-disk 
profiled shaft-rotor system is also found. 

Keywords— profiled; rotor; frequency; response; transfer 
matrix 

I.  INTRODUCTION 

        Rotor dynamics and stability of shaft-rotor systems 
has been the concern of engineers and scientists for more 
than a century, and it will continue to persist as an active 
area of research and study in coming future. Rotating 
shafts are employed in industrial machines like steam and 
gas turbines, internal combustion engines, compressors 
and pumps for power transmissions. Increasing demand 
for power and high speed transportation makes the study 
of vibratory motion essential. Rotor-dynamics [1] deal 
with dynamics of rotating machines. It is different from 
structural vibration analysis because of the gyroscopic 
moments. Transfer matrix method is commonly employed 
for rotor dynamics analysis and is one of the accurate 
analytical methods. 
       Basic idea of Transfer Matrix Method (TMM) was 
first given by Holzer for finding natural frequencies of 
torsional systems. Myklestad [2, 3] adapted the method 
for computing natural frequencies of airplane wings. Prohl 
[4] applied it to rotor-bearing systems in which 
gyroscopic moments were included. Lund [5] used 
complex variables and showed how system damping 
could be accounted for including self-exciting influences, 
such as oil whip and/or internal frictions. The above 
developments led to the method came to be known as 
“The Transfer Matrix Method” [6].  Computation of 
critical speed is the main parameter for the design of 
shaft-rotor systems. Improved method for computing 
critical speeds and rotor stability is done by Murphy and 
Vance [7]. Whalley and Abdul Ameer [8] used frequency 
response analysis for profiled shafts to study the dynamic 
response of shaft-rotor system, but with single disk. Also, 
the effects of rotor length and rotating speed were not 
included. They studied the system behavior for the shafts-
rotors with diameters which are functions of their lengths. 

They derived an analytical method using Euler-Bernoulli 
beam theory combined with the transfer matrix method. 
Here, profiled shaft with dual-disks with different profiles, 
lengths and rotational speeds have been considered with 
the method TMM for frequency response calculation and 
then is validated with Whalley and Ameer [8] for a single 
disk. Further the step response of the system is also found. 
            Since less work has been done on the profiled 
shaft-rotor systems, the dynamics of the system is to be 
considered. Further, most of the works on rotating 
systems have been done with particular cylindrical 
element type shaft-rotor with uniform cross-sectional area. 
In this paper, rotor-shaft with continuously varying cross-
sectional area is presented. Also, effects of important 
factors like rotor-lengths and rotor-speeds are shown 
separately. 
 
Nomenclature 
 
A(x) = area of cross-section 
C(x) = compliance per unit of length  
L(x) = inertia per unit of length  
L=length of shaft  
E=modulus of elasticity 
F(s) = system model matrix 
My(x, s) =bending moment in x–y plane  
qy(x, s)=shear force  
Y(x, s) =vertical deflection of shaft  
θ(x, s)=slope of the shaft 
I(x) =mass moment of inertia  
ρ=material density  
J=shaft polar moment of inertia  
Ω=whirling frequency  
Γ(s) =wave propagation factor  
Ω=shaft–rotor rotational speed  
R(s) =rigid rotor model matrix 
m=rigid disk mass  
r(x)=shaft radius at distance x from bearing 
 

II. MATHEMATICAL MODELLING   

 

A. Shaft Model 

         The vibrating shaft model is illustrated in the figure 
below. Input and output relationship for deflection, slope, 
bending moment and shear force for the distributed 
parameter shaft model [8] is given by,  
 
(��,��,���,���) ᵀ = F(s) (��,��,���,���) ᵀ                 (1) 
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Where y, θ, My and Qy are the deflection, slope, bending 
moment and shear force respectively. 

 
Fig. 1. Vibrating shaft model 
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B. Rigid disk  
 
The output vector from the shaft will become the input for 
the rigid disk model, as shown in Fig. 2. i.e., for single 
disk and shaft model, we have 
����� � �����,Ѳ���� � Ѳ����,������ � 	
��Ѳ���� � ������ 
and  
����� � �������� � 
�����   
     
Hence (Y3(s), θ3(s), My3(s), Qy3(s))T =R(s) 
(Y2(s),θ2(s),My2(s),Qy2(s)) 

Where, R(s)=

2

1 0 0 0

0 1 0 0

0 1 0

0 0 1

J s

ms

 
 
 

− Ω 
 
 

                   (2) 

III.        RESULTS AND DISCUSSIONS   
 

A. Cantilever Shaft-rotor system with Multi Disks  
 

       A Cantilever profiled Rotor-Shaft System with two 
disks at different lengths is shown in Fig 2. By replacing 

1 1 1 2 2 2, ,  and , ,l m J l m J  instead of l, m and J as in [6], 

for suffixes 1 and 2 respectively for the rotors-shafts and 
neglecting the bearing effects, as proceeded in the above 
sections, in the same way for the dual disk systems 
illustrated in Fig. 2 can be formulated as- 
H(s) =�����. 
�������s�. 
��s�		,	and                              (3) 

(�����, ������,(Ѳ����, Ѳ�����, �������,�������,	and 

(������, ������� are the deflections, slopes, Bending 
Moments and Shear Forces at the Fixed and Free end 
respectively. Default data for the system illustrated in Fig. 
2 is given below: 
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From eq. (A1.11), we get 
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, and input-output vectors 

relationship is given by: 
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          After applying the boundary conditions, we get 

deflection 5y  at the free end of the system, so we will 

ultimately get the transfer function, where the profile 
equation of the shaft-rotor is given by [8] 

2( ) 0(1 ( ))r x r N N x= −   

For example, transfer function for NN=40 and rotational 
speed of 10000 rpm with 1 N vertically downward force 
on the disk is: 

4 4 3 8 2 11 15
x x x x

6 4 5 8 4 11 3 15 2 17 20
x x x x x x

 1.667s  + 7.52110s  + 7.35110s  + 3.59710 s + 2.35910

s +4.51310s +4.44410s +2.85610 s +1.63110 s +1.06510 s +1.46710
 

 Fig. 2. Rotor with dual disk  
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   The profile equation for the shaft-rotor [8] is given by 
2

0( ) (1 ( ) )r x r N N x= − For NN=40, r0=0.005, 10,000 
rpm and unit force, for single disk the results are matching 
as in Whalley and Ameer [8], as shown in Fig. 3.  

 
 

 Fig. 3. Bode plot for single disk 
 

B. Results for Dual Disks 
 
            Profile equation [8] is: 2

0( ) (1 ( ) )r x r N N x= −   
Bode plots for different profile values, rotating speeds and 
shaft-rotor lengths have been obtained and are shown in 
Fig. 4, Fig. 5 and Fig. 6 respectively and the results 
obtained are tabulated for better understanding.  

 
 

Fig. 4. Bode diagram for varying profiles    
 

 Fig. 5. Bode diagram for different rotor speeds  
 

 
                 Fig. 6. Bode diagram for different rotor lengths 

 
      The x-axis of bode plot represents the frequency in 
rad/s, while y-axis represents the amplitude in dB. 
However they can be represented by other units. The 
whirling frequency is noted at the peaks in magnitude 
diagram of bode. All the plots are obtained using 
MATLAB ® software. 
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Table I.       Results obtained from Bode plots. 

 

1l  

(m) 
2l  

(m) 

Speed 
(rpm)  

Value 
of NN 

Critical 
Frequency 
(rad/sec) 

Amplitude 
(dB) 

0.050 0.050 10000 40 620 -95.1 
0.075 0.075 10000 40 303 -80.6 
0.075 0.075 10000 15 343 -83.1 
0.075 0.075 10000 25 327 -82.1 
0.075 0.075 3000 40 304 -70.1 
0.075 0.075 5000 40 304 -74.5 
0.075 0.075 6500 40 304 -76.8 
 
 
C. Step Response 

       For NN=40, at 11000 rpm, the step response, following 
an impulse of unit load (in Newton) at the free end, gives 
the characteristics shown in Fig. 7.  This indicates that 
steady state conditions will be restored in approximately 
0.134 s. At lesser rotational speeds the effects would be 
much greater because of the reduction in the gyroscopic 
couple. In Fig. 7, at 5500 rpm the maximum overshoot 
remains almost unchanged, but its settling time is almost 
double than for 11000 rpm, i.e., 0.276 s, after the same 
impulse disturbance. As shown herein, this reveals a part of 
the problem. 
 

IV.       CONCLUSION 

 
         The establishment of the vibrational characteristics of 
multi disk profiled shaft-rotor systems present challenging 
problems. The vibration analysis with the help of bode plot 
has been done for the multi-disks profiled rotor system. 
 

 
Fig. 7. Step Response 

         Here, multi-disk-rotor systems are shown in Fig. 2 for 
the illustration purposes. For a particular speed and varying 
NN, as shown in Fig. 4 and results shown in Table I, the 
resonant frequency decreases with the increase in the value 
of NN while amplitude increases for values of NN from 20 
to 50. For varying speed, we get the bode plot as shown in 
Fig. 5. Keeping the lengths and value of NN unchanged, the 
critical frequency remains almost unaltered as shown in the 
Table I, while the amplitude goes on decreasing. For 
different shaft-rotor lengths, we get the bode plot as shown 
in Fig. 6, where the speed and value of NN kept unchanged, 
the critical frequency decreases tremendously with 
increasing length as shown in Table I, while the amplitude 
goes on increasing. Additionally the step response is also 
shown in Fig. 7 and hence the analysis of multi-disk 
profiled shaft-rotor system has been done clearly, including 
effects of rotor-lengths and rotor-speeds, on the dynamic 
magnification and whirling speeds of the system, which are 
not shown in [8]. 
 
        Gears and other such rotating devices can be mounted 
instead of cylindrical discs and further calculations can be 
made. 
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