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Abstract— Present work deals with the numerical analysis of 
rotor carrying a central disk mounted over symmetrical ball-
bearings, by considering the excitation forces using 
Muszynska’s model along with linear unbalance force due to 
disk. Other nonlinearities considered in the model include: 
ball bearing contact forces and disk-stator rub-impact 
forces. Finite element model incorporating bending degrees 
of freedom is employed to mesh the system. Implicit Wilson-
theta time-integration scheme is used to get the phase- plane, 
time-history plots  and frequency spectra. Different periodic 
motions are studied by varying the different speeds. 

Keywords— Single disk rotor; Nonlinear forces; Time 
integration scheme; Effects of speed of rotation. 

I.  INTRODUCTION  

Aero-engine rotors plays very important role and they are 
very expensive. There is a great need to understand the 
dynamics of the rotors in a better manner to design heavy 
machinery like aero engine rotors by considering the 
characteristics of the rotors dynamically. In general time 
or frequency domain techniques are used to analyze the 
nonlinear dynamics analysis of the rotor supported over 
ball bearings. The coupled nonlinear equations of motion 
are iterated until the steady-state was attained with a finite 
time steps in time domain techniques but in frequency 
domain techniques the equations are solved and periodic 
state is assumed in the given frequency values. In the 
analysis of engine rotors, very large number of modes 
needs to be considered in time and frequency domain 
techniques. 
 
A typical engine model requires consideration of many 
hundreds of modes, posing demands on conventional 
time/frequency domain methods. Typical aero-engine 
rotors are often mounted on rolling element/SFD bearings. 
Hertzian contact forces, internal clearances and varying 
compliance of the ball bearings will affect the high speed 
rotor dynamic characteristics.  Many researchers have 
derived ball bearing dynamic characteristics. The effects 
of bearing clearances were analyzed by Childs [1]. Saito 
[2] studied the response of unbalance nonlinearity of the 
Jeffcott rotor bearing system with bearing radial 
clearances. Akturk et al.[3] investigated rigid rotor shaft 
supported over ball bearings under radial and axial and 
radial vibrations. Bai and Xu [4] modeled rotor bearing 
system by considering the centrifugal force and 

gyroscopic moments of the ball bearing. Lee et al. [5] 
presented a design approach by considering the applied 
loads and spin speed of the ball bearing as the stiffness 
effecting parameters. Panda and Dutt [6] analyzed the 
rotor ball bearing system by varying the stability speed 
limit and the unbalance response. Tiwari et al. [7-9] 
simulated the bearing effects theoretically and studied the 
nonlinear dynamic response due to the radial internal 
clearance of the ball bearing. 
Harsha et al. [10- 11] investigated the nonlinear dynamic 
behavior of ball bearing-rotor systems with different 
sources of nonlinearity. Bai et al. [12] studied the 
nonlinear dynamic characteristics of a rotor and bearing 
system under the application of axial preload. Yang et al. 
[13] presented the bifurcation analysis of a rotor 
supported over ball bearing system with different 
nonlinear excitation forces. Chen [14] modeled the 
unbalanced rotor dynamic system by considering the 
bearing clearance, Hertzian forces on the bearing. The 
bearing supported over ball bearings was studied by many 
works. But in very few works, there is a consideration of 
nonlinear external excitation forces.  Jedrezjewski et 
al.[15] presented a spindle supported on angular contact 
ball bearing system for dynamic analysis with few 
external excitation forces. 
Mario [16] analyzed the ball bearing system with an 
application of a known nonlinear force and presented the 
effect with different diagrams and introduced a new 
computational iterative procedure for the rotor system and 
compared the results of the system with the available 
literature. Patel et al. [17] formulated an analytical model 
by considering the ball and race contact forces to 
determine the localized defect effects on ball bearing 
vibration.  Ghafari et al. [18] investigated the vibrations of 
balanced fault-free ball bearings. 
Zhang et al. [19] presented a nonlinear model of rotor-seal 
system and analyzed nonlinear behavior of the system 
under the external excitation of the fluid force.  Cheng et 
al.[20] investigated nonlinear phenomena of rotor 
supported on bearing with seal system using a lumped 
parameter model based on Jeffcott system. Here oil-film 
bearing were employed. Hua et al.[21] studied the 
dynamic behavior of rotor- seal system by considering the 
Muszynska’s  seal forces in the model. Here simply 
supported bearings are considered. Li et al.[22] illustrated 
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the nonlinear dynamic behavior of rotor-labyrinth seal 
system using lumped parameter model. More recently, Li 
et al. [23] presented a nonlinear rotor bearing model 
subjected to steam forces and analyzed the system using 
finite element model. Here, the oil-film bearing 
nonlinearity was considered.  
In aerospace applications, soft-mounted rolling element 
bearings using squirrel cage supports are commonly 
found. So, it needs to account nonlinear contact forces at 
the bearings along with the rotor-seal forces.  Present 
work deals with the numerical analysis of rotor carrying a 
disk mounted on symmetrical ball-bearings by 
considering the excitation forces using Muszynska’s 
model along with linear unbalance force at the disk. Finite 
element model incorporating Timoshenko beam elements 
is employed to mesh the system. Implicit Wilson-theta 
time- integration scheme is used to get the time response, 
phase plane diagrams and frequency spectra. Effects of 
different operating speeds are analyzed with periodic 
motion, quasi as well as chaotic motions. The 
organization of the paper is as follows: section 2 deals 
with the mathematical modeling employed for overall 
rotor dynamic system and expressions for the forces. 
Section 3 presents the results and discussions and section 
4 gives the conclusions. 

II. MATHEMATICAL  MODELLING 

In this section of mathematical modeling of rotor dynamic 
system using finite element analysis and descriptions of 
nonlinear excitation force and the ball bearing contact 
force are presented. Fig.1 is a geometric model 
representation of a rotor supported on ball bearings with a 
seal on the disk. 
 
 
 
 
 
 
 
 
 
 
Fig.1.The structural diagram of a rotor supported on ball bearings with a 

seal at the disk position. 
 
In this system the external excitation forces will act on the 
bearing and on the disk, the Jeffcott rotor is used to model 
the rotor and supported on two bearings on both the sides 
as shown in the above figure. 

A. Modelling of a rotor supported on ball bearings with a 
seal at the disk system 

The FE Model of the rotor supported on ball bearings with 
a seal at the disk system is constituted using two-noded 
Timoshenko beam elements as shown in Fig.2. Viscous 
damping and gyroscopic effects are considered. The 
system is modeled with four elements and five nodes and 
total of twenty Degrees of Freedom (DOF), in which half 
of them are translational and other half are rotational by 

considering two of rotational and two of translational 
DOF on each node. In our study, axial and torsional 
vibrations are ignored with only flexural behavior of rotor 
is taken into account. 
 

 

 

 

 

 

Fig.2. Finite Element Model of a rotor-ball bearing system 

The disk and two ball bearing positions are at nodes 3,1 
and 5 respectively. The nodes 2 and 4 are the mid nodes 
of 1, 3 and 1, 5 nodes. Kinetic and potential energies of 
the shaft unit in terms of displacements v and w along x 
and y directions and unit mass density ρA and diametral 
and polar moments of inertia of shaft Is and Ip are [24]: 
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Here, Ω refers to the speed of operation and v and w are 
displacements in x and y directions respectively. In Finite 
element method, for the cross section of the shaft unit 
translational and rotational displacement can be 
determined and is given by [26]: 
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where N1,N2,.. and D1, D2,.. are the shape functions and 
{qe}

T={v 1  w1  θ1  φ1 v2  w2  θ2  φ2} is nodal displacement 
vector. The element mass, gyroscopic and stiffness 
matrices of shaft are obtained as follows [4]: 
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Likewise, The disk kinetic energy due mass of the disk 
md, mass and polar momts of inertia Id and Jd written as 
follows. 

Td= ( ))(2
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And the work due to disk mass eccentricity in given by 
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 Wd=md eΩ2 (v cos Ωt+ w sin Ωt)    (9) 
This gives mass and gyroscopic matrices of disk as 
follows: 
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Following Lagrangian approach, the consistent stiffness, 
mass and gyroscopic matrices can be derived. These 
matrices are assembled and using Guyan’s static 
condensation scheme, the rotational degrees of freedom 
{ θ1, φ1, θ1,  φ2, …….} are eliminated  and the following 
governing equations of motion for the system are 
obtained: 
 
[ ] }F{}q]{K[}q]{G[}q]{C[}q{M rrrr =+Ω−+ ɺɺɺɺ  (12) 

 
where {qe}

T={v 1  w1 v2  w2  v3  w3   v4  w4  v5  w5} are the 
overall translational degrees of freedom and [Mr], [Gr], 
[Cr],and [Kr] are reduced mass matrix, Gyroscopic 
matrix, viscous damping matrix and the stiffness matrix. 
The force equation can be written as in vector form  

 
{F}=[F xb  Fyb 0 0 Fgx+meΩ2cosΩt   
   Fgy+meΩ2sinΩt-mg 0 0 Fxb  Fyb]

T    (13) 
 
The numerical solution for these nonlinear equations is 
obtained  from fourth order Runge-Kutta method. Effect 
of speed and seal clearance ratio on system stability is 
studied using bifurcation analysis. Nonlinear excitation 
force and the ball bearing contact forces are modeled as 
follows:  
 
B. Nonlinear excitation force model 
 
The clearance in the turbine and compressors is a non-
axisymmetric, because of this there is a chance of having 
rotordynamic forces on the system and these are 
considered in very few authors. There are numerous 
models to explain the nature of nonlinear excitation 
forces, but Muszynska model is a well defined force 
model [25]. The expression for nonlinear character of 
seal- fluid force is given as:  
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Averaging of the circumferential flow which is rotating 
with the an angular velocity of γω. This is an assumption 
made in Muszynska model. Here ω speed of the shaft and 

γ is the very important variable of Muszynska model, 
which will give the ratio of fluid average circumferential 
velocity.  Here mg is the inertia coefficients. In the Eq. (7), 
with the increase in the eccentricity of the rotor, there is 
increase in the parameters namely gas stiffness (Kg) and 
damping(Dg). 
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Here 
s

22

c

yx +
=ε is the relative eccentricity at the seal; 

cs is seal clearance, n1, n2 and γ0 vary for different types of 
seal materials; Characteristic factors K0, D0 and mg can be 
obtained from Childs equation. 

C. Ball Bearing contact forces 

In the rotor, ball bearings have various components like 
inner race- which is fixed to the rotating journal rigidly. 
outer race- is fixed to the bearing housing and the angular 
contact rolling balls and cages. Due to the eccentricity of 
rotor the outer race and the inner race will not be at the 
middle position all the time and rolling balls will apply 
the force on inner race due to outer race displacements.  
This is a restoring force, which is generated by the contact 
deformation between balls and races. The bearing 
compliance and total stiffness will vary periodically with 
variation of the eccentricity of the rotor with the races and 
the balls and the bearing varying compliance is a 
parametric excitation of the rotor-balling bearing 
coupling.  
In the ball bearing model, it is supposed that the balls are 
equispaced between the surfaces of the inner and the outer 
races and the contact angles are not considered. Fig. 3 
shows the schematic of ball bearing model, where inner 
race center O2 and outer race center O1 are in same line 
joining the ball center. 
 
 
 
 
 
 
 
 

 

 

 

 

Fig.3 Ball bearing Schematic model 
 

Let Nb, r and R are respectively the number of balls, radii 
of inner race and outer race respectively and r0 is radial 
clearance. According to the nonlinear Hertzian contact 
theory, the contact forces between ball and race due to the 
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rolling contact can be expressed in terms of Hertzian 
contact stiffness Cb as:
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and xt=x+(R-r0) cos θj and yt= y+(R-r0) sin θj are the 
coordinates of circumferential point on the ball. 
Also, θj is jth ball angular position and is given by   
θj =ωcage×t +( π2 j− π2 )) bN , here j is the number of ball 

in the bearing from 1 to Nb, and the cage angular velocity 

is ( )rR

r
cage +

×Ω=ω    

III.   RESULTS AND DISCUSSIONS 

Assembly and condensation procedure is implemented in 
MATLAB. The program could generate the nodal 
connectivity automatically based on the number of 
elements choosen. Table I shows the geometric and 
material properties of the rotor considered in the analysis.  

TABLE I. GEOMETRIC AND MATERIAL PROPERTIES OF ROTOR 

 
Ls 

mm 
ds(mm) E(GPa) G 

(GPa) 
ρ(kg/m3) 

1000 50 197 80 7810 
k dd(mm) td(mm) e(µm) 

0.65 500 80 60 
 
Without considering bearing dynamics, the rotor as a 
simply-supported beam first three bending modes as 
obtained from the present program are respectively: 
98.311 Hz, 389.82 Hz and 865.7 Hz. These are close to 
the ANSYS solution (98.151 Hz, 387.46 Hz and 855.14 
Hz) using 6-degree of freedom pipe elements. Further, the 
corresponding Campbell diagram showing the variation of 
natural frequency with shaft rpm is depicted in Fig.4.  
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Fig.4. Campbell diagram variation in first two whirl modes 

It is found that a four element model is sufficient to 
approximate the dynamics of rotor in lower frequency 
range. Table II gives the ball bearing and disc parameters 
employed in the analysis. 
 

TABLE II. MAIN PARAMETERS OF THE BEARINGS AND DISK 
 

 
First, the ball bearing forces and unbalance at the disk are 
only considered. Figures 5 and 6 show the time history 
and phase-plane diagrams at the disk node for an 
operating speed equal to 100 rpm. It is observed that the 
motion in X and Y directions are not symmetrical at disk 
node, due to the gravity and the effect of speed on the Y 
bending mode. The motion is chaotic in Y direction. 

 
 

Fig.5. Time histories at disk in x and y directions 
 

 
 

Fig.6.  Phase diagrams in x and y directions at disk node 

Nb Cb (N/m3/2) r(mm) R mm) ro(µm) 

8 13.34×109 31.0 49.52 20 

Disk 

   md ( kg)      Id(kgm2)   Jd(kgm2) 

15.95 0.64e-2 1.28e-2 
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Figure 7 shows the frequency response as obtained from 
the FFT analysis at the bearing node 1. It is seen clearly 
the first few variable compliance (ball passing) 
frequencies clearly.  
 

 

Fig.7. Frequency spectrum at the ball bearings 

Beyond 1000 rpm, the motion is ergotic and the finally 
enters chaotic state. Fig.8 shows the whirl orbit of the 
shaft at bearing node. 

 

Fig.8. Whirl orbit of shaft at bearing node 

It is seen that the intermittent parametric bearing forces 
change the dynamic response considerbly. As a next step, 
the following parameter values in Muszynska’s force 
components are considered: n1=2, n2=1, γ0=0.3, cs=10 µm, 
Ko=1070.5 N/m, Do=3.2849 Ns/m, mf=0.0085 kg at 
Ω=100 rpm. Fig. 9 shows, the corresponding whirl orbits 
at the bearing node. It is clearly seen that these external 
seal forces are affecting the dynamic characteristics of 
rotor. The speed dependent seal forces are considerably 
higher comparative to the synchronous unbalance forces 
and the bearing reactions.  It is obvious therefore, that the 
magnitudes of the responses are relatively high in this 
case. Further, the nonlinearity in the seal forces influences 
the dynamics of the system to a greater extent.   

 

Fig.9. Orbits at bearing node 

IV.   CONCLUSIONS 

This paper presented the dynamic modeling of a rotor 
supported on ball bearings with a seal at the disk system 
subjected to nonlinear parametric external excitations. A 
centrally supported symmetrical disk-shaft bearing system 
has been analyzed using Timoshenko beam elements. 
Intermittent ball bearing contact forces and Muszynska’s 
force at seal-disk interface were considered in the model 
to simulate a real-time system. Results show that there 
was a marked effect of each type of nonlinear excitation 
on the overall system response. As a future scope of the 
work, the effects of variables such as speed and seal 
clearance on stability of system are to be studied. 
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