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Abstract— The demand of high precision motion has very compact in structurally. Besides, they have a lot of
been increasing in the recent years. Since performance of advantages like having no backlash, no friction, no
today’s many mechanical systems requires high stiffness and |yprication and no error due to lubrication. However, they
accurate positioning capability, parallel manipulators gained have a limited range of motion as they have to flex
popularity. Their superior architecture provides better load without sustaining any plastic deformation at the joints.

capacity and positioning accuracy over the serial ones. In - ‘ . . . .
this work, a popular parallel manipulator, Stewart Platform, Flexure hinges with single-axis can be divided into two

has been studied. Stewart Platform is a positioning system Main categories: leaf and notch type hinges [5]. Due to
that consists of top plate (moving platform), a bottom plate ~relative low rotation precision and stress concentration,

(fixed base), and six extensible legs connecting the top plate leaf type hinge is seldom adopted. In 1965, Paros and
to the bottom plate. This work includes design and analysis Weisbord [6] introduced the first notch hinge and circular
of a complete positioning system. In order to achieve better flexure hinge. The common feature of these two types is
accuracy over commonly used universal and spherical joints  ease of manufacture. Therefore, researchers turned their
the flexible joints have been employed. Flexible joints would  4tention to other configurations that could provide
give better results than universal and spherical joints precision rotation in an even larger angular range. Smith

because they eliminate friction and backlash. Flexible joint L 17 d fl hi f ellioti
has been developed in the FE software ANSYS for static and et al. [7] presented a flexure hinge of elliptic cross-

modal analysis and using this flexible joint Stewart Platform  Section, the geometry of which is determined by ratio of
has been developed in the FE software for FE analysis. The the major and minor axes. Likewise, Lobontiu et al. [8]
static and modal analysis of the Stewart Platform using introduced an analytical model for corner-filleted flexure
flexible joints will be evaluated. hinges that are incorporated into planar amplification
mechanisms. Later, they also introduced the parabolic and
Keywords—stewart platform; flexible joint; finite element hyperbolic hinges configurations [9]. Closed-form
analysis equations are formulated to characterize their compliance
I. INTRODUCTION both for the active rotation and all other in and out-of-

hanicall bled o h , Lorb lane motions. To sum up, Gui-Min et al. [5] represented
Mechanically assembled joints such as universal or e compliance model or the right circular hybrid flexure

joints reduce the accuracy due to manufacturing error%inges. The close-form solutions were provided to

The_ monolithic ch_aracteristics of_the flexible _jOi_ntS h_elp characterize the flexibility and precision of rotation. The
avoid man::factu_rmg errors. TZ'S. Cr;_araCte”St'C brings,recision model with stress considerations were verified
gas_y mz;:nu actutr)lng prgqesi and implies ab\I/ery Cfmpf’vl ith the finite element analysis. Their results show that
esign t gt. cag 2e llise in the mmro-a_sserfn R4 WOf: SF&“%G most suitable solutions for large displacements and
presented in [1-2]. From operation point of view, flexible i, 5 ccyracy are reached with the right circular hybrid

joints clgarly reduce frictional losses. Therefore, they .d(?Iexure hinges rather than the right circular ones and

extremely carefully due to their very sensitive force'direction and rigid for all other axes and deformations.

g!splacgmelnt relatlonsh|g. _Becatl:se f%f_ th_'s' h'g(;bonstructively, a flexure hinge may have several sensitive
Imensional accuracy during the fabrication and,,.q These sensitive axes define the rotations and

calibration after fabrication process are needed. Flexurﬁmtions Apart from these, Paros and Weisbord [6]
may also be sensitive to the working temperature [3]. The oqanted two-axis circular flexure hinges which are
main difference between flexure mechanisms anQegigned in serial configuration. The serial design

conventional joints is the consideration of kinematicS,eserves the convenience of having each flexure hinge
stability and the design issue. Wei et al. [4] stated that th&esigned according to the standard-axis geometry.

flexure hinges havg a lot of anantages compared to tt'Igfowever, it also requires the extra-length that is necessary
others such as ball joints or universal ones. Because of tl?

o § locate the two flexures in a serial manner.
fact that they are manufactured monolithically, they are
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Flexible joints as the main part of the system are
studies considering different profile of the flexible joints
and effective design parameter to introduce the best
profile of the joints based on the application that is
needed. For this purpose five different profiles (right
corner-filleted,
parabolic) of flexible joints have been considered and
further studies have been carried out on flexible joints
based on some parameters such as accuracy, flexibility

circular, elliptical,

FLEXIBLE JOINT

hyperbolic

and the maximum stress in the joints.

In order to study the accuracy of flexure hinge, an FE
model is created in ANSYS (FE Software) in which the
material used is steel (E = 207807 0.3) “Fig. 2,” The
displacement of the flexure hinge rotation center produced

(t=1,L=10, c=r=2 mm)
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Fig. 4. Geometric corner's offset vs. end deflection for different

by input displacement of 0.1 mm applied at the right edg@eyure profile
indicates the accuracy of the flexure hinge. Whatever this
displacement was smaller the flexure hinge operates From the “Fig. 3,” and “Fig. 4,” we can observe that as

closer to a real hinge.
v

(x)

172

the deflection increases the geometric corner's offset
increase in a large amount for Corner-Filleted flexure
hinge than for Elliptical flexure hinge than for Parabolic

flexure hinge and in least amount for Hyperbolic flexure
hinge. So “Fig. 3,” and “Fig. 4,” shows that hyperbolic

flexure hinge is the most accurate profile and Corner-
Filleted flexure hinge is the least accurate profile.

A. Modelling of Hyperbolic Flexible Joint

Considering the flexure hinge geometric specifications
of t=10, [ =100mm and the property taken into
account for the Titanium material as: Modulus of Elasticity
(N/mn) = 109872, Poission Ratio = 0.3, Density (ki/m

Fig. 1. Parameters defining a symmetric conic-section flexure hinge _ 4500, Yield strength (N/m?h: 1345. After considering
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Fig. 2. Parametric design of a flexure hinge
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Fig. 3.Geometric corner’s offset for different flexure profile

above parameters, the flexure joint is developed in ANSYS
software is shown in “Fig. 5,”.
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Fig. 5. Solid model of hyperbolic flexure joint

B. Satic Sress Analysis

The mashed part with solid element and taking
20nodel186 3D element and created 1325 element with the
shape of the element is tetragonal within the volume of the
solid model with free mesh is shown in “Fig. 6,”.
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Fig. 6. Model with Meshed region
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Fig. 7. Model with Boundary condition
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Fig. 8. Undeformed and deformed shape of the flexure joint

The boundary condition is applied to the flexural hinge
structure at the bottom as it is attached to the fixed base
the geometry at the bottom is fixed i. e. encaster to preve
a relative motion and is shown in “Fig. 7,” The load is

and deformed shape of the flexure joint. The stress for
different values of flexure thickness and length is given in
Table | and in Table II.

Table 1. Maximum stress for different values of flexure thickness

S No Flexure Thickness Maximum Stress
e (t) mm (N/mm?)
1 6 2169.91
2 8 1994.97
3 10 1273.46
4 12 895.81
5 14 645.62
6 16 493.89

Table Il. Maximum stress for different values of flexure length

S. No Flexure Length Maximum %tress
T () mm (N/mm")
1 60 1453.77
2 80 1352.65
3 100 1309.01
4 120 1297.45
5 140 1295.59
6 160 1269.41

From the above static stress analysis, we have analyzed
the stress pattern throughout the model. “Fig. 9,” shows the
maximum stress developed in the model for flexure
thickness t = 10 mm is 1273.46 N/mrand “Fig. 10,”
shows the maximum stress developed in the model for
flexure length | = 100 mm is 1309.01 N/rhwhich are
less than the Titanium material Yield strength = 1345
N/mn?. So t = 10 mm and | = 100 mm are the design
parameter for the flexure joint.

AN

JUN 25 2012
11:13:53

NODAL SOLUTION

STEP=1

SUB =1

TIME=1

SEQV (AVG)
DMX =.981391
NN =13.1949
SMX =1273.4€

853.369 1133

13.1949 293.253
153.224

e
§73.311
3.282 7

.43
1273.46

applied to the upper face. “Fig. 8,” shows the undeformedig. 9. Stress pattern for flexure thickness t = 10 mm
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NODAL SOLUTION
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Fig. 12. Solid model with meshing
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Fig. 10. Stress pattern for flexure length | = 100 mm
Il.  STEWART PLATFORM

A. Modelling of Sewart Platform

For the modelling of Stewart Platform using the
flexure joint considering the following design parameters
[16]. After considering these parameters the solid model
of Stewart Platform with flexure joint is generated in the
ANSYS software and is shown in “Fig. 11,”.

VOLMES AN

TYPE NTM JON 26 2012 STEWART PLATFORM FE MODEL

. Fig. 13. Solid model with bottom plate is fixed

A payload resting on the top plate or moving plate of
the Stewart Platform applying a uniform pressure at the
top plate of the Stewart Platform. Due to this solid model
deformed and stresses are developed in the legs. The
deformed and undeformed shape after applying pressure
of Stewart Platform is shown in “Fig. 14,".

DISPLACEMENT AN
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SUB =1 23:54:08

STEWART PLATFORM FE MODEL

Fig. 11. Solid model of Stewart Platform with flexure joint

B. Satic Sress Analysis

After developing the solid model in ANSYS, static
analysis has been done using 3D solid element 20nodel
and creating 21685 elements within the solid model an
maximum number of node is 38112 within the volume of
solid model. The meshed region with tetragonal elemer

and with boundary condition is shown in “Fig. 12,” and -
“Fig. 137 Fig. 14. Deformed and Undeformed Shape of SP

STEWART PLATFORM FE MODEL

Proceedings of theinternational and 8National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18-20 2013

1047



NODAL SOLUTION

STEF=1
SUB =1
TIME=1
sx

R3¥3=0
DMK =.002062
NN =-160.568
N =1318.74

JUN 27 2012
00:03:50

(aVG)

-160.568
3.79824

STEWART PLATFORM FE MODEL

496.501

168.167 825.636

$90.003

1154.37

332.534 661.268 1318.74

Fig. 15. Stress pattern of the X-Component in the legs
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Fig. 16. Stress pattern of the Y-Component in the legs
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Fig. 17. Stress pattern of the Z-Component in the legs

Stresses are developed in the legs and flexure joint dt
to applying pressure at the top plate of SP. “Fig. 15/,
shows the stress pattern of the X-Component in the leg
and the maximum stress is developed and has tt
numerical value 1318.74 N/nfnwhich is less than the
Yield strength of the material. “Fig. 16,” shows the stres:
pattern of the Y-Component in the legs and the maximur
stress is developed and has the numerical value 1249.
N/mn? which is less than the Yield strength of the

Component in the legs and the maximum stress is
developed and has the numerical value 704.596 N/mm
which is also less than the Yield strength of the material.

C. Modal Analysis

After static analysis Modal analysis is done for the
Stewart Platform in the ANSYS software. Table Il shows
the first five natural frequencies for the Stewart Platform.

Table Ill. Natural Frequency for Stewart Platform

Order Natural Frequency (Hz)

1 177.40

2 178.29

3 345.53

4 509.72

5 511.73
NODAL SOLUTION AN
;"Es:gziﬁ 408 22:21:33

[}

.250824 9 .752473 1.0033
.125412 .627061 .87788%

STEWART PLATFORM FE MODEL

1.12871

Fig. 18. The first order natural vibration mode shape
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39383
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2

.419691
STEWART PLATFORM FE MODEL

material. “Fig. 17,” shows the stress pattern of the Z-¥ig. 19. The second order natural vibration mode shape
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Fig. 20. The third order natural vibration mode shape
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Fig. 21. The fourth order natural vibration mode shape
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Fig. 22. The fifth order natural vibration mode shape

IV. CONCLUSION

The main conclusions are:

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

(20]

(11]

(12]

(23]

(14]

(15]

First five mode shapes corresponding to first five

natural frequencies are shown in “Fig. 18, 19, 20, 21, an

22,

gel

1. The Hyperbolic Flexible Joint is the most
accurate geometrical profile for multibody
analysis.

2. The maximum stresses developed in the
hyperbolic flexible joint and in the legs of the
Stewart Platform are less than the material Yield
strength and the structure is safe.
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