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Abstract— This paper describes how neural networks 
are much capable to solve the forward kinematics of 
parallel manipulators. The solution to the forward 
kinematics involves highly nonlinear equations of 
motion, which can be solved by numerical methods 
with great accuracy but the time consuming 
calculations restrain it in implementing for real time 
kinematic control. Two types of neural networks 
namely multilayer perceptron (MLP) and radial basis 
function (RBF) are considered to solve the forward 
kinematics of 3RPS (revolute-prismatic-spherical) 
parallel manipulator. The performance and suitability 
of both the networks are evaluated for this specific 
application. 
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I.  INTRODUCTION  

            Parallel manipulators have become popular in 
recent years because of their merits like high stiffness, 
large load carrying capacity and high precision control 
over the prescribed path of end-effecter. Parallel 
manipulators are closed loop kinematic structures in 
which the tool platform is connected to the fixed base by 
means of several serial legs in parallel. V.E .Gough and 
S.G.Whitehall [1] has developed a 6 degree of freedom 
(dof) Universal tire testing machine. The 6 dof 
manipulator has designed by D.Stewart [2] as an motion 
simulator. K.H.Hunt [3] has studied the kinematics of 
distinct types of parallel manipulators. In recent times a 
fewer dof mechanisms has attracted the attention of 
researchers because of reduction in manufacturing cost 
and easiness in control. The 3dof translational DELTA 
robot has been investigated by R.Clavel Delta [4], the 
3dof CapaMan manipulator by X.J.Liu et al [5, 6]. The 
kinematics of 3-RPS parallel manipulator with three 
identical legs have been studied by K.Lee and D.K.Shah 
[7], L.W.Tsai [8] . S.A.Joshi and L.W.Tsai [9], C.H.Liu 
et al [10] has studied the singular configurations of 3RPS 
manipulator through inversion of jacobian matrix. The 
inverse kinematics for parallel manipulators is usually 
simple, in which joint displacements are computed for 
the given end-effecter position, but the solution for direct 
kinematics is complicated, in which a set of nonlinear 

equations is to solved, however it is difficult to find a 
unique solutions. Many researchers have solved the direct 
kinematics problem using the special methods such as 
numerical approaches; algebraic elimination and 
continuation methods. J.Gallardo et al [11] have carried 
out the forward position analysis of parallel manipulators 
with identical limb type revolute-prismatic-spherical (R-
P-S) leg by applying the Sylvester dialytic elimination 
method. C.R.Rad et al [12] addressed the forward 
kinematics of a 3-dof medical robot with R-P-S joints 
through Newton-Kantorovich (N-K) method. Y.Li and 
Q.Xu [13] has performed forward kinematics analysis for 
a 3PRS spatial parallel mechanism using Newton 
iterative algorithm. T.Y.Lee and J.K.Shim [14] have 
solved FKP (forward kinematics problem) of a 6 dof 
Stewart manipulator through algebraic elimination 
method, M.Raghavan [15] by continuation method.  
Generally different methods (numerical approaches, 
algebraic methods) will give different solutions for a 
specific direct kinematic problem, but these methods take 
much time for computation so not applied for a real time 
control of manipulators. 
           Some researchers have put their efforts towards 
FKP solving of parallel robots using neural networks. 
H.Sadjadian et al [16] has applied the NN approach for 
solving the forward kinematics of a 3-dof redundant 
manipulator, M.Dehghani et al [17] for hexa parallel 
robot. The main objective of the paper is to find out the 
direct kinematic solution of a parallel manipulator with 
the help of neural network method. The work has been 
under taken to find the best ANN configuration for the 
problem. In this paper two types of NN namely 
multilayer perceptron ( MLP) and (RBF) are used to 
solve FKP of 3RPS parallel manipulator, the performance 
of both the networks are compared and simulation of 
networks have been performed.  

   The organization of the paper is followed as section 2 
describes the geometry of the manipulator and the 
kinematic analysis of mechanism, section 3 explains the 
workspace analysis. A brief introduction to NN approach 
is given in section4; NN solution for FKP in section5 and 
the performance of the networks are compared in 
section6. Section 7 describes the simulated results of 
networks. Finally, the paper is concluded in Section 8. 
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II. K INEMATIC ANALYSIS  

A. Geometric description and position analysis of 
manipulator 

        The geometry of the 3-RPS parallel manipulator is 
shown in Fig.1, in which the tool platform {�} is 
connected to the fixed base {�} by three identical serial 
chains having R-P- S joints. The revolute joints are 
located at the corners (Ai) of a fixed base which is an 
equilateral triangle; the spherical joints are located at the 
corners (Bi) of the tool platform. 

          
             Fig.1 3RPS spatial manipulator       

 The axes of revolute joints are �� (� � 1,2,3),  

[ ]T
zyxi aaaa =  is the position vector of corner 

points  ��, and [ ]Tzyxi bbbb = is the position 

vector of the spherical joint ��  with respect to the moving 
frame 
�� which is located at 
  the centre point of 
moving platform. The magnitude of the position vector ��  
is represented by �	and the magnitude of the position 
vector �� is represented by		�.  The ��� leg length and unit 

vector are represented by id and iw   respectively. The 

rotational transformation matrix P
O R  from the moving 

frame to the fixed frame can be expressed by
 

     P
O R .= )()()( γαβ zxy RRR

      (1)                                                                             
The three Euler anglesγ ,α , β  rotating about the �, 
� and �-axes of the fixed reference frame in 
sequence that is (�-�-�) Euler angle system is 
considered here. The rotation matrix can also be 
expressed in terms of the direction cosines ofu ,v  and w   

as follows P
O R .  =


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Whereu ,v  andw   be three unit vectors along u, v and w 
axes of the moving frame {�}. 

The position vector of point iB can be expressed as
 

            ii bpq +=                    (3)                                                                                                     

Where     i
p

p
O

i bRb = , [ ]Tiziyixi qqqq =       

considering the mechanical constraints imposed by a 

revolute joint iR the motion of the spherical joint S 

located at ��  is constrained to move in one of the 
following three planes:                                      

           01 =yq                     (4a)                                                                       

         xy qq 22 3−=          (4b)                                                                   

          xy qq 33 3+=          (4c)                                                                   

  On substitution of Eq. (3) into Eq. (4) ,we can get 

                  0=+ yy hup              (5a)                                                           

                       yx uv =                    (5b)                                                                   

                   )(
2 yxx vu
h

p −=       (5c)                                                      

B. Inverse kinematic analysis 

In an inverse kinematic analysis one can get the actuated 
joint variables for a given configuration of end-effecter. 
The vector loop closure equation for ��� limb is given as                                           

ii
P

P
O

i abRpd −+=
     (6) 

 
  Operate the dot product to the above equation yields 

[ ] [ ]ii
T

iii aqaqd −−=2

     
 for 3,2,1=i (7) 

Taking square root of the above equation can find the 
actuator displacements; in which there are a total of eight 
possible solutions for a given end-effecter pose.   

C. Forward kinematics problem 

In direct kinematics problem can find the position and 
orientation of the end-effecter for the actuator 
displacements		��,��,��.The position and orientation of 
the mechanism can be obtained by taking the distance 
between any two consecutive spherical joints ��  and ���� 
is equals to a constant √3�, which can be expressed 
mathematically as 

 

   
hBB ii 31 =+   (8) 

    [ ] [ ] 03 2
11 =−−− ++ hqqqq ii

T
ii    

3,2,1=i  (9)    

    The above Eq. (9) gives a set of three nonlinear 
equations which can be solved either by Sylvester dialytic 
elimination method or by any numerical methods but 
which requires a lot of computational efforts. 
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III.  WORKSPACE ANALYSIS 

           For effective utilization of parallel manipulators, it 
is necessary to determine the size and shape of workspace 
of the manipulators. The dexterous workspace of 
manipulator signifies its working potential. While 
designing a practical manipulator the physical constraints 
interns of the range of parasitic motions of the end-
effecter and limits of the prismatic actuators, interference 
of legs and limitations on the passive joints are to be 
considered. C.Gosselin [18], J.P.Merlet [19] presented an 
algorithm enabling to compute the possible rotation of the 
end-effecter around a fixed point. 
 
 

 

 

A. Workspace simulation 

Since symmetric architectures are commonly considered 

in literature, 3RPS manipulator with both 321 AAA∆ and 

321 BBB∆  as equilateral triangles with |���| � |���| �

|���| =� � 2�, 321 PBPBPB == =�=1m) and has 

been taken up as an example. The possible maximal leg 
lengths range, for each leg � � 1,2,3 considered here is [1   
3] m and the two rotational Euler anglesα , β  of the 

moving platform are bounded in the range [-060 060 ]. 
The workspace volume of 3RPS manipulator is shown in 
Fig 2, using the inverse kinematic solutions instead of 
using the direct kinematics in which a multiple solutions 
are to be obtained for the given input joint positions. The 
workspace volume is continuous and there are no vertical 
gaps along the �-coordinate. The bottom, middle portion 
of the reachable workspace volume is cylindrical in shape 
and the top portion is in the shape of a triangular pyramid. 
Larger workspace size at the middle sections and smaller 
workspace size at top sections is observed. 
               

 
     Fig.2  Workspace  volme of 3RPS parallel manipulator 

 

B. Neural networks 

A neural network resembles the functioning of a human 
brain. The key elements in NN are neurons which are the 
information processing units interconnected with each 
other, the connections between elements determine the 
network function. In NN knowledge is represented as 
numeric weights; these are iteratively adjusted to 
minimize the sum of the squared approximation errors 
using the specified training algorithm. NN can be used to 
input-output mapping, generalization, parallel and high 
speed information processing. 

 

C. Multi layer perceptron neural networks 

         A.Jain et al [20] extensively studied MLP network 
structures; MLP is the most common type of feed-forward 
network which consists of an input layer, output layer and 
some hidden layers as shown in Fig.3. A vector of 
predictor variable values ���…..��	�		is supplied to the 
input layer. The input layer only transmits these values to 
each neuron in the hidden layer. The neurons in hidden 
layer adjust the weights until the desired error between the 
output vector and desired vector is achieved. 
     

 

                     Fig.3 MLP Network structure 

D. Radial basis neural networks 

 
Radial basis function (RBF) networks consist of two 
layers, in which one is hidden layer and other is the output 
layer [21], [22].  The input layer has neurons with a linear 
function that simply feed the input signals to the hidden 
layer. Moreover, the connections between the input and 
hidden layer are not weighted. The hidden layer uses 
neurons with RBF activation that perform the radial basis 
function, which is expressed mathematically as

  
ii xxx −= ϕϕ )( 3,2,1=i    (10) 

                                                            
�	
 input data point �� denotes the centre of radial basis 
function and x is the vector pattern applied to the input 
layer.

  

                    

IV.  NN SOLUTION FOR FKP 

          
         In order to model NN structure for solving FKP of 
3RPS parallel manipulator, have chosen 4000 data points 
randomly while it covers the entire reachable workspace 
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of the manipulator which is shown in Fig.2.Then inverse 
kinematics problem (IKP) is solved for these chosen 
workspace points , the MLP and RBF  NN are trained for 
these  IKP solutions. 

 

A. Multi layer perception network 

            A Multi-layer feed forward network with back 
propagation (BP) learning and Levenberg -Marquardt 
training algorithm is considered to solve the FKP of 
manipulator. The input layer has three nodes which 
represent the three input actuator 

displacements ),,( 321 ddd
�

, similarly the output layer 
has three nodes which represents three position variables 

),,( pzpyp x �
 are the outputs of the mechanism. The 

desired behavior can be generalized by a set of inputs and 
output pairs. Different MLP structures were tested by 
varying the design parameters such as number of hidden 
layers, number of neurons in each layer for finding the 
efficient network configuration. The MLP network with 
larger number of hidden layers does not perform well, so 
two MLP structures one having one hidden layer and 
other with two hidden layers are considered for further 
testing. The performance of two NN structures one with 
one hidden layer and other with two hidden layers for 
various configurations are given in Table.1and Table.2 
respectively. Three performance indices mean square 
errors (MSE), sum squared error (SSE) and auto 
correlation coefficient (R) are used to evaluate the NN. 
The MLP with two hidden layers having neurons 15, 20 in 
first and second hidden layers respectively is observed as 
the best MLP NN structure with performance measures 
MSE=0.000537, SSE=7.42 and auto correlation 
coefficient R=0.99844.The performance plot of this MLP 
is shown in Fig.4, it is observed that the training, testing 
and validation curves are followed the consistently 
decreasing trend. The regression plot for training, 
validation and testing is shown in Fig.5. The MLP 
structure with one hidden layer having 100 neurons results 
a considerable performance of MSE=0.00311, SSE=43 
and R=0.99559 among all the neuron configurations. It is 
observed that networks with less number of nodes are the 
good choice because of the number of weights and also 
training time is reduced considerably.  
 

 
               Table.1 Performance of MLP with one hidden layer 
   

Network 

Structure 

                Multilayer Feed Forward 

                 One hidden layer                                 
 

Network 

Performance 

Hidden 

Layer 

neuron
 

Trainin

g 

Time 

(sec)
 

                   

           

MSE                                                                     

              

           

SSE
 

                

              

R
 

S=10        19 0.0076  106 0.9900 

S=30        47 0.0054 75 0.9935 

S=50        42 0.0042 59 0.9955 

S=100      138 0.0031 43 0.9955 

S=300      120 0.0032 44 0.9954 

          
               
                 Table.2 Performance of MLP with two hidden layers   
  
  
Network 

structure 

                 Multilayer feed forward 

                   Two hidden layer                           

 

 

 

Network 

Performa

nce 

No.  Hidden 

Layer 

neurons 

Traini

ng 

Time 

(sec) 

                                

        

MSE                                                                     

                               

    

SSE 

                              

           

R 

S1=5,S2=10         21 0.0041                  57 0.9952             

S1=10,S2=15         38                  0.0032                  44     0.9959                        

S1=15,S2=20       139                     0.0005                07       0.9984          

S1=20,S2=25         43                  0.0031                   43       0.9954            

S1=25,S2=30         80                 0.0036            51          0.9953            

S1=30,S2=35         94                 0.0028                    39           0.9957            

S1=40,S2=45       435                    0.0029      40      0.995       

 
                           

    
 
      Fig.4 Performance plot for MLP Network      
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    Fig.5 Regression plot for MLP Network 
 

 

B. RBF networks 

     
    Radial basis function is chosen as the second alternative 
NN structure to solve the FKP of a 3RPS parallel 
manipulator. The input and output patterns were generated 
in same manner as in the MLP. In RBF the neurons are 
added continuously to the network until the desired 
accuracy will be reached. The network is trained for 
different configurations with different spread parameters 
varied between 0.04 and 4, among all the configurations 
only a two networks with best performance are selected, 
results are given in Table.3. The performance of the RBF1 
for the spread parameter of 0.15, 2275 neurons in hidden 
layer is shown in Fig.6.The network is trained over 2275 
epochs using 2275 neurons for attaining the desired MSE 
of 0.00010, the linear regression plot between targets and 
the outputs for RBF1 with a regression coefficient of 
R=0.99943 is shown in Fig.7.The desired MSE of 0.00001 
with a regression coefficient of R=0.99996 is achieved for 
the RBF2 in a 14400 sec long time. 
 

 
                    

      Table.3 Performance of RBF Networks 

       

Network 

performance 

    

Training 

  Time  

   (sec)           

      

     MSE                                              

 

    R 

RBF1       2220 0.00010 0.9994 

RBF2     14400 0.00001 0.9999 

 

                                                           

 

Fig.6 Training performance for RBF Network  

     

 

 

 Fig.7 Regression plot for RBF Network                  

 

V  COMPARISION OF MLP AND RBF 

           Even though both NN approaches yields good 
results for training and testing of given set of data points, 
some comparison between the MLP and RBF is necessary 
to discuss briefly. A two hidden layer MLP with neurons 
15, 20 yields a lowest MSE of 0.000537, so the average 
error of FKP solution in the typical workspace is less than 
0.5mm. In RBF Network the lowest MSE of 0.00001 is 
attained, so the average error of FKP solution is less than 
0.01mm. The training time for MLP is 139 seconds where 
as in RBF the training time is 14400 sec. It is apparent 
from the results discussed above that the errors occurred 
in RBF is less when compared with MLP, but the training 
time for RBF is much more than the MLP. 
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  VI   SIMULATION OF NN FOR FKP SOLUTION 

The best NN configurations for both MLP and RBF were 
tested for 100 chosen workspace points. The simulated 
network outputs using MLP for the chosen workspace 
points (targets) are shown in Fig.8-10 for each position 
variable (
�,

,
�) separately. The approximate errors 
for	
�	,	

	,	
�  coordinates  are  found to be 3mm,1mm 
and 2mm respectively using the MLP structure. Similarly 
the desired positions and estimated outputs for		
�	,	

	,	
�  
are shown in Fig.11-13 using the RBF networks. It is 
observed that the approximation errors in �, �, � 
coordinates are 0.4mm, 0.3mm and 0.5mm respectively. It 
can be observed that the performance of RBF is better 
than the MLP structure. 
     

 
Fig.8 Tracking Performance of  
�   for MLP 

 
 
           Fig.9 Tracking Performance of 	

   for MLP 

        

 

 

 

 

              Fig.10 Tracking Performance of  	
�   for MLP 

 

 

 

                Fig.11 Tracking Performance of 	
�	for RBF 

 

 

 

                Fig.12 Tracking Performance of 	

 for RBF                                                               

 

           Fig.13 Tracking Performance of  
� for RBF 

 

CONCLUSIONS 

In this work proposed the application of neural networks 
for solving forward kinematics of a 3RPS parallel 
manipulator. The accuracy and tracking performance of 
both the MLP and RBF structures are compared; 
simulation results revealed that RBF has better 
performance than MLP. The NN method can also be 
applied for other parallel manipulators which have no 
unique solutions. 
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