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Abstract— This paper describes how neural networks
are much capable to solve the forward kinematics of
paralledl manipulators. The solution to the forward
kinematics involves highly nonlinear equations of
motion, which can be solved by numerical methods
with great accuracy but the time consuming
calculations restrain it in implementing for real time
kinematic control. Two types of neural networks
namely multilayer perceptron (MLP) and radial basis
function (RBF) are considered to solve the forward
kinematics of 3RPS (revolute-prismatic-spherical)
parallel manipulator. The performance and suitability

equations is to solved, however it is difficult to find a
unique solutions. Many researchers have solved the direct
kinematics problem using the special methods such as
numerical approaches; algebraic elimination and
continuation methods. J.Gallardo et al [11] have carried
out the forward position analysis of parallel manipulators
with identical limb type revolute-prismatic-spherical (R-
P-S) leg by applying the Sylvester dialytic elimination
method. C.R.Rad et al [12] addressed the forward
kinematics of a 3-dof medical robot with R-P-S joints
through Newton-Kantorovich (N-K) method. Y.Li and
Q.Xu [13] has performed forward kinematics analysis for

a 3PRS spatial parallel mechanism using Newton
iterative algorithm. T.Y.Lee and J.K.Shim [14] have
solved FKP (forward kinematics problem) of a 6 dof
Stewart manipulator through algebraic elimination
method, M.Raghavan [15] by continuation method.
Generally different methods (numerical approaches,
algebraic methods) will give different solutions for a
specific direct kinematic problem, but these methods take

) .~ much time for computation so not applied for a real time
Parallel manipulators have become popular incgntrol of manipulators.

recent years because of their merits like high stiffness, Some researchers have put their efforts towards
large load carrying capacity and high precision controlpkp solving of parallel robots using neural networks.
over the prescribed path of _end—ef_fecter. Para"?'H.Sadjadian et al [16] has applied the NN approach for
manipulators are closed loop kinematic structures INsolving the forward kinematics of a 3-dof redundant
which the tool platform is connected to the fixed base bymanipulator, M.Dehghani et al [17] for hexa parallel
means of several serial legs in parallel. V.E .Gough andgpot. The main objective of the paper is to find out the
S.G.Whitehall [1] has developed a 6 degree of freedomyjrect kinematic solution of a parallel manipulator with
(dof) Universal fire testing machine. The 6 dof the help of neural network method. The work has been
manipulator has designed by D.Stewart [2] as an motionnder taken to find the best ANN configuration for the
simulator. K.H.Hunt [3] has studied the kinematics of problem. In this paper two types of NN namely
distinct types of pa_raIIeI manipulators. In recent tir_nes amultilayer perceptron ( MLP) and (RBF) are used to
fewer dof mechanisms has attracted the attention ofglye FKP of 3RPS parallel manipulator, the performance
researchers because of reduction in manufacturing cos§f poth the networks are compared and simulation of
and easiness in control. The 3dof translational DELTA networks have been performed.

robot has been investigated by R.Clavel Delta [4], the The organization of the paper is followed as section 2
3dof CapaMan manipulator by X.J.Liu et al [5, 6]. Thejescripes the geometry of the manipulator and the
kinematics of 3-RPS parallel manipulator with threeyinematic analysis of mechanism, section 3 explains the
identical legs have been studied by K.Lee and D.K.Shafyorkspace analysis. A brief introduction to NN approach
[7], LW.Tsai [8] . S.A.-Joshi and L.W.Tsai [9], C.H.Liu js given in section4; NN solution for FKP in section5 and
et al [10] has studied the singular configurations of 3RP$,¢ performance of the networks are compared in
manipulator through inversion of jacobian matrix. Thesection6. Section 7 describes the simulated results of

inverse kinematics for parallel manipulators is usuallynetworks. Finally, the paper is concluded in Section 8.
simple, in which joint displacements are computed for

the given end-effecter position, but the solution for direct
kinematics is complicated, in which a set of nonlinear

of both the networks are evaluated for this specific
application.

Keywords— workspace volume; MLP; RBF
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Il.  KINEMATIC ANALYSIS

—0 _ u
. - N _ Where b="R,’b ¢ —[qix Oy O
A Geometric description and position analysis of considering the mechanical constraints imposed by a

manipulator lute joint R th ti f th herical joint S
The geometry of the 3-RPS parallel manipulator isrevou © Joint I the “motion ot the spherical join

shown in Fig.1, in which the tool platformB} is located atB; is constrained to move in one of the
connected to the fixed basd}{ by three identical serial following three planes:

chains having R-P- S joints. The revolute joints are 0, =0 (4a)

located at the corners {Aof a fixed base which is an

equilateral triangle; the spherical joints are located at the

corners (B of the tool platform. 0oy =~V 30, (4b)
B
w_ R 3 @)
L=/ \ = c
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il"d_ \ A J
Ry p, +hu, =0 (5a)
w. L . i1 A 2 2
A f"'»‘, 2 Z] - N —
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Fig.1 3RPS spatial manipulator B. Inverse kinematic analysis

In an inverse kinematic analysis one can get the actuated
The axes of revolute joints arg; (i =1,2,3), joint variables for a given configuration of end-effecter.
The vector loop closure equation fgy, limb is given as

d, = p+°R, b -2
points 4;, and b, =[bX b, bz]T is the position i 3 ©)

vector of the spherical joiri; with respect to the moving  Operate the dot product to the above equation yields
frame uvw which is located ap the centre point of

moving platform. The magnitude of the position veetor 2 [ AT~ -
is represented by and the magnitude of the position d, _[qi ai] [qi a"] for 1 = l2’3(7)

vectorb; is represented by Theic, leg Iength and unit Taking square root of the above equation can find the
vector are represented b and W, respectively. The actuator displacements; in which there are a total of eight
possible solutions for a given end-effecter pose.

a :[ax ay aZ]T is the position vector of corner

rotational transformation matrloxRP from the moving

frame to the fixed frame can be expressed by C. Forward kinematics problem
o — In direct kinematics problem can find the position and
R. =R R (a)R p p
P y(’g) (DR.(Y) D orientation of the end-effecter for the actuator

The three Euler anglgysa,ﬂ rotating about thé, displacementsl, ,d,,d;.The position and orientation of
X andY-axes of the fixed reference frame in the mechanism can be obtained by taking the distance

sequence that i¥'¢X-Z) Euler angle system is between any two consecutive spherical joBtsindB;, ;
considered her&he rotation matrix can also be 's equals to a constant3h, which can be expressed

. . ) . mathematically as
expressed in terms of the direction cosinds of and W y
u V. W,

on | [B.8a =3

asfollows" R, ={u, Vv, w,
u \Y W, T 2 _ P
S (2) [Qi _Qi+1] [Qi - qi+1]_ " =0 1=123 (9)

Whereu ,V andw be three unit vectors along u, v and w
axes of the moving framebt. The above Eq. (9) gives a set of three nonlinear
The position vector of poir, can be expressed as equations which can be solved either by Sylvester dialytic

_ elimination method or by any numerical methods but

0 =p+b ®) which requires a lot of computational efforts.
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B. Neural networks

A neural network resembles the functioning of a human
brain. The key elements in NN are neurons which are the
information processing units interconnected with each
For effective utilization of parallel manipulators, it other, the connections between elements determine the
is necessary to determine the size and shape of workspaggtwork function. In NN knowledge is represented as
of the manipulators. The dexterous workspace oOhumeric weights; these are iteratively adjusted to
manipulator  signifies its working potential. While minimize the sum of the squared approximation errors
designing a practical manipulator the physical constraintgsing the specified training algorithm. NN can be used to

interns of the range of parasitic motions of the endinput-output mapping, generalization, parallel and high
effecter and limits of the prismatic actuators, interferenc@peed information processing.

of legs and limitations on the passive joints are to be

considered. C.Gosselin [18], J.P.Merlet [19] presented an _

algorithm enabling to compute the possible rotation of th&- Multi layer perceptron neural networks

end-effecter around a fixed point. A.Jain et al [2D extensively studied MLP network
structures; MLP is the most common type of feed-forward
network which consists of an input layer, output layer and
some hidden layers as shown in Fig.3. A vector of
predictor variable value$x;.....x,, ) is supplied to the
input layer. The input layer only transmits these values to

A. Workspace simulation each neuron in the hidden layer. The neurons in hidden

Since symmetric architectures are commonly considered@yer adjust the weights until the desired error between the

in literature, 3RPS manipulator with bothA A, A, and output vector and desired vector is achieved.
AB,B,B; as equilateral triangles will0 A, | = [04,| =
|045] =g = 2m,|PB,| = |PB,| = |PB,|=h=1m) and has

been taken up as an example. The possible maximal le
lengths range, for each lég= 1,2,3 considered here is [1
3] m and the two rotational Euler anglés3 of the

I1l. WORKSPACE ANALYSIS

moving platform are bounded in the rang®@ 60°].
The workspace volume of 3RPS manipulator is shown ir
Fig 2, using the inverse kinematic solutions instead of
using the direct kinematics in which a multiple solutions
are to be obtained for the given input joint positions. Thd>. Radial basis neural networks
workspace volume is continuous and there are no vertical

gaps along the-coordinate. The bottom, middle portion Radial basis function (RBF) networks consist of two
of the reachable workspace volume is cylindrical in shapeayers, in which one is hidden layer and other is the output
and the top portion is in the shape of a triangular pyramidayer [21], [22]. The input layer has neurons with a linear
Larger workspace size at the middle sections and smalléiinction that simply feed the input signals to the hidden
workspace size at top sections is observed. layer. Moreover, the connections between the input and
hidden layer are not weighted. The hidden layer uses
neurons with RBF activation that perform the radial basis
function, which is expressed mathematically as

¢ (x) = ¢x-x[i=123 (10)

Input Laver Hidden Layer Output Layer

Fig.3 MLP Network structure

i, input data pointy; denotes the centre of radial basis
function and x is the vector pattern applied to the input
layer.

IV. NN SOLUTION FOR FKP
Fig.2 Workspace volme of 3RPS parallel manipulator
In order to model NN structure for solving FKP of

3RPS parallel manipulator, have chosen 4000 data points
randomly while it covers the entire reachable workspace
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of the manipulator which is shown in Fig.2.Then inverse
kinematics problem (IKP) is solved for these chosen
workspace points , the MLP and RBF NN are trained for
these IKP solutions.

A. Multi layer perception network
A Multi-layer feed forward network with back

S=10 19 0.0076 106 0.99(¢
S=30 47 0.0054| 75 0.993
S=50 42 0.0042| 59 0.995
S=100 138 0.0031 43 0.995
S=300 120 0.0032| 44 0.995

propagation (BP) learning and Levenberg -Marquardt
training algorithm is considered to solve the FKP of
manipulator. The input layer has three nodes which
represent the three input actuator

Table.2 Performance of ML P with two hidden layers

displacementéd,,d,,d,) g Similarly the output layer | Network Multilayer feed forward
has three nodes which represents three position variables .

structure Two hidden layer
(Py» PY, P2) ; are the outputs of the mechanism. Th No Fidden T Tram
desired behavior can be generalized by a set of inputs and
output pairs. Different MLP structures were tested hy Layer ng
varying the design parameters such as numbe_r o_f hidden neurons Time | Mse s | R
layers, number of neurons in each layer for finding the
efficient network configuration. The MLP network with| Network (sec)
larger number of hidden layers does not perform well, so
two MLP structures one having one hidden layer and®forma | $1=5,52=10 21| 00041 57 | 09952
other with two hidden layers are considered for further,e S1=10.52=15 38 100032 | 24 | 09959
testing. The performance of two NN structures one with
one hidden layer and other with two hidden layers for $1=15,52=20 139 | 0.0005 07 | 0.9984
various configurations are given in Table.land Table|2
respectively. Three performance indices mean square S1=20,52=25 43| 00031 43 | 0.9954
errors (MSE), sum Squared error (SSE) and auto S1=25,52=30 80 | 0.0036 51 | 0.9953
correlation coefficient (R) are used to evaluate the N
The MLP with two hidden layers having neurons 15, 20 in $1=30,52=35 94 | 0.0028 39 | 0.9957
first and second hidden layers respectively is observed|as eSS 2355 | 00029 20 o998
the best MLP NN structure with performance measures ‘ ' '
MSE=0.000537, SSE=7.42 and auto correlation
coefficient R=0.99844.The performance plot of this MLP
is shown in Fig.4, it is observed that the training, testing
and validation curves are followed the consistently reommepopeomn BN ™)

decreasing trend. The regression plot for training,
validation and testing is shown in Fig.5. The MLP
structure with one hidden layer having 100 neurons results
a considerable performance of MSE=0.00311, SSE=43
and R=0.99559 among all the neuron configurations. It is
observed that networks with less number of nodes are the
good choice because of the number of weights and also
training time is reduced considerably.

Table.1 Performance of ML P with one hidden layer

Mean Squared Error (mse)

Best Validation Performance is 0.0019449 at epoch 208

Train

Validation
Test

---- Best

L L L s
0 20 40 60 80

s s s s s L
100 120 140 160 180 200

214 Epochs

Networ k Multilayer Feed Forward .
Fig.4 Performance plot for MLP Network
Structure One hidden layer
Network Hidden | Trainin
Performance | Layer g
neuron Time MSE SSE | R
(sec)
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Fig.5 Regression plot for MLP Network

B. RBF networks

Radial basis function is chosen as the second alternatiy
NN structure to solve the FKP of a 3RPS parallel
manipulator. The input and output patterns were generate
in same manner as in the MLP. In RBF the neurons ar
added continuously to the network until the desired
accuracy will be reached. The network is trained for
different configurations with different spread parameters
varied between 0.04 and 4, among all the configuration:
only a two networks with best performance are selectec
results are given in Table.3. The performance of the RBF.
for the spread parameter of 0.15, 2275 neurons in hidde
layer is shown in Fig.6.The network is trained over 2275
epochs using 2275 neurons for attaining the desired MS

Fig.6 Training performance for RBF Network

of 0.00010, the linear regression plot between targets ana

the outputs for RBF1 with a regression coefficient of

R=0.99943 is shown in Fig.7.The desired MSE of 0.00001
with a regression coefficient of R=0.99996 is achieved for

the RBF2 in a 14400 sec long time.

Outputs vs. Targets, R=0.99943

©  Data Points
Best Linear Fit
= Y=T
g 15}
:
¥or
>
o
s
€ 05
<
©
5
o
5 0Of
(o]
-0. ‘ . . ”
3. 0 05 1 15 2
Targets T

Fig.7 Regression plot for RBF Network

V COMPARISION OF MLP AND RBF

Table.3 Performance of RBF Networ ks

Network
performance| Training MSE R
Time
(sec)
RBF1 2220 0.00010 0.9994
RBF2 14400 0.00001 0.9999

Even though both NN approaches yields good
results for training and testing of given set of data points,
some comparison between the MLP and RBF is necessary
to discuss briefly. A two hidden layer MLP with neurons
15, 20 yields a lowest MSE of 0.000537, so the average
error of FKP solution in the typical workspace is less than
0.5mm. In RBF Network the lowest MSE of 0.00001 is
attained, so the average error of FKP solution is less than
0.01mm. The training time for MLP is 139 seconds where
as in RBF the training time is 14400 sec. It is apparent
from the results discussed above that the errors occurred
in RBF is less when compared with MLP, but the training
time for RBF is much more than the MLP.
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VI SIMULATION OF NN FOR FKP SOLUTION

The best NN configurations for both MLP and RBF were
tested for 100 chosen workspace points. The simulate
network outputs using MLP for the chosen workspace °
points (targetsare shown in Fig.8-10 for each position  °e}
variable p,.p,.p,) separately. The approximate errors . °*
forp,,p,,p, coordinates are found to be 3mm,1mm < °*°
and 2mm respectively using the MLP structure. Similarly
the desired positions and estimated outputspfarp,, , p,
are shown in Fig.11-13 using the RBF networks. It is = °*c %% =2 &% & s & 7 s @
observed that the approximation errors iny,z e

coordinates are 0.4mm, 0.3mm and 0.5mm respectively. It
can be observed that the performance of RBF is better
than the MLP structure.

0.625

52 |

Fig.11 Tracking Performance of, for RBF

1.8 [~

(m)

] 10 20 30 a0 50 60 70 80 a0
sample number

Fig.8 Tracking Performance of, for MLP oal /

8 AN an de

Fig.9 Tracking Performance of, for MLP

Fig.13 Tracking Performance qf, for RBF

CONCLUSIONS

In this work proposed the application of neural networks
for solving forward kinematics of a 3RPS parallel
manipulator. The accuracy and tracking performance of
both the MLP and RBF structures are compared;
simulation results revealed that RBF has better
performance than MLP. The NN method can also be
N RV applied for other parallel manipulators which have no
aal W i , 4 unique solutions.

Fig.10 Tracking Performance pf for MLP
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